首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   8篇
  2021年   3篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   12篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  1998年   2篇
  1995年   1篇
排序方式: 共有79条查询结果,搜索用时 78 毫秒
1.
Laurentian Great Lakes Lake Sturgeon (Acipenser fulvescens) are hosts to lamprey species, including native Silver Lamprey (Ichthyomyzon unicuspis) and invasive Sea Lamprey (Petromyzon marinus). Silver Lamprey coevolved with Lake Sturgeon and cause negligible mortality, but Sea Lamprey can negatively affect Lake Sturgeon populations. Sea Lamprey abundance in Lake Erie has been above targets set by resource managers, with the St. Clair – Detroit River System (SCDRS) suspected as a source of Sea Lamprey production into Lake Erie. This study summarizes lamprey marking on Lake Sturgeon captured during agency assessment surveys in the SCDRS since 1996 and provides insight on the potential for Sea Lamprey to negatively affect Lake Sturgeon in the SCDRS. Lamprey marks (any lamprey species) were noted on 48.2% of Lake Sturgeon (2.5 marks/fish) and 3.3% of Lake Sturgeon assumed to be susceptible to mortality by Sea Lamprey (<760 mm TL; 0.06 marks/fish). Silver Lamprey were the only lamprey species found attached to Lake Sturgeon and there was no difference between oral disc diameters of Silver Lamprey and marks measured on Lake Sturgeon in Lake St. Clair and the lower St. Clair River (p = .45). Based on logistic regression, probability of at least one lamprey mark increased with Lake Sturgeon total length and was highest in Lake St. Clair. The probability of observing at least one lamprey mark on a 760 mm Lake Sturgeon was 8.1% or less for each sampling location in the SCDRS aside from Lake St. Clair (28.1%). Results suggest that parasitism of Lake Sturgeon by Sea Lamprey in the SCDRS is rare, particularly for Lake Sturgeon <760 mm TL. Low incidence of lamprey marks on Lake Sturgeon assumed to be susceptible to mortality from Sea Lamprey parasitism and zero occurrence of Sea Lamprey being observed attached to a Lake Sturgeon suggest Sea Lamprey at their current abundance likely have little effect on the Lake Sturgeon population in the SCDRS. Caution should be taken when using mark size to assign marks to lamprey species as there is substantial overlap among species oral disc diameters, potentially inflating the perceived impact of Sea Lamprey on Lake Sturgeon in areas with native lampreys.  相似文献   
2.
3.
We have developed a new offline chromatographic approach for the selective enrichment of phosphorylated peptides that is directly compatible with subsequent analysis by online nano electrospray ionization tandem mass spectrometry. In this technique, a titanium dioxide (TiO2)-packed pipette tip is used as a phosphopeptide trap that acts as an offline first-dimension separation step in a two-dimensional chromatography system. This is followed by online nano reversed-phase high-performance liquid chromatography. Here, we present suitable methods for enrichment, optimized separately for each step: sample loading, washing and elution from the TiO2-filled tips. To increase the trapping selectivity of the TiO2 column, we used the sodium salt of 1-octanesulfonic acid combined with 2,5-dihydroxybenzoic acid as ion-pairing agents and displacers for acidic peptides. These agents also improve the binding of phosphorylated peptides and block the binding of non-phosphorylated ones. This enrichment procedure takes 30 min, followed by a 100-min HPLC program, including washing and an elution gradient.  相似文献   
4.
Sister chromatid separation in anaphase depends on the removal of cohesin complexes from chromosomes. In vertebrates, the bulk of cohesin is already removed from chromosome arms during prophase and prometaphase, whereas cohesin remains at centromeres until metaphase, when cohesin is cleaved by the protease separase. In unperturbed mitoses, arm cohesion nevertheless persists throughout metaphase and is principally sufficient to maintain sister chromatid cohesion. How arm cohesion is maintained until metaphase is unknown. Here we show that small amounts of cohesin can be detected in the interchromatid region of metaphase chromosome arms. If prometaphase is prolonged by treatment of cells with microtubule poisons, these cohesin complexes dissociate from chromosome arms, and arm cohesion is dissolved. If cohesin dissociation in prometaphase-arrested cells is prevented by depletion of Plk1 or inhibition of Aurora B, arm cohesion is maintained. These observations imply that, in unperturbed mitoses, small amounts of cohesin maintain arm cohesion until metaphase. When cells lacking Plk1 and Aurora B activity enter anaphase, chromatids lose cohesin. This loss is prevented by proteasome inhibitors, implying that it depends on separase activation. Separase may therefore be able to cleave cohesin at centromeres and on chromosome arms.  相似文献   
5.
Protein phosphatase 2A (PP2A) holoenzymes consist of a catalytic C subunit, a scaffolding A subunit, and one of several regulatory B subunits that recruit the AC dimer to substrates. PP2A is required for chromosome segregation, but PP2A's substrates in this process remain unknown. To identify PP2A substrates, we carried out a two-hybrid screen with the regulatory B/PR55 subunit. We isolated a human homolog of C. elegans HCP6, a protein distantly related to the condensin subunit hCAP-D2, and we named this homolog hHCP-6. Both C. elegans HCP-6 and condensin are required for chromosome organization and segregation. HCP-6 binding partners are unknown, whereas condensin is composed of the structural maintenance of chromosomes proteins SMC2 and SMC4 and of three non-SMC subunits. Here we show that hHCP-6 becomes phosphorylated during mitosis and that its dephosphorylation by PP2A in vitro depends on B/PR55, suggesting that hHCP-6 is a B/PR55-specific substrate of PP2A. Unlike condensin, hHCP-6 is localized in the nucleus in interphase, but similar to condensin, hHCP-6 associates with chromosomes during mitosis. hHCP-6 is part of a complex that contains SMC2, SMC4, kleisin-beta, and the previously uncharacterized HEAT repeat protein FLJ20311. hHCP-6 is therefore part of a condensin-related complex that associates with chromosomes in mitosis and may be regulated by PP2A.  相似文献   
6.
Non-random mortality associated with commercial and recreational fisheries have the potential to cause evolutionary changes in fish populations. Inland recreational fisheries offer unique opportunities for the study of fisheries induced evolution due to the ability to replicate study systems, limited gene flow among populations, and the existence of unexploited reference populations. Experimental research has demonstrated that angling vulnerability is heritable in Largemouth Bass Micropterus salmoides, and is correlated with elevated resting metabolic rates (RMR) and higher fitness. However, whether such differences are present in wild populations is unclear. This study sought to quantify differences in RMR among replicated exploited and unexploited populations of Largemouth Bass. We collected age-0 Largemouth Bass from two Connecticut drinking water reservoirs unexploited by anglers for almost a century, and two exploited lakes, then transported and reared them in the same pond. Field RMR of individuals from each population was quantified using intermittent-flow respirometry. Individuals from unexploited reservoirs had a significantly higher mean RMR (6%) than individuals from exploited populations. These findings are consistent with expectations derived from artificial selection by angling on Largemouth Bass, suggesting that recreational angling may act as an evolutionary force influencing the metabolic rates of fishes in the wild. Reduced RMR as a result of fisheries induced evolution may have ecosystem level effects on energy demand, and be common in exploited recreational populations globally.  相似文献   
7.
The selective enrichment of phosphorylated peptides prior to reversed-phase separation and mass spectrometric detection significantly improves the analytical results in terms of higher number of detected phosphorylation sites and spectra of higher quality. Metal oxide chromatography (MOC) has been recently described for selective phosphopeptide enrichment (Pinkse et al., 2004 [1]; Larsen et al., 2005 [2]; Kweon and Hakansson, 2006 [3]; Cantin et al., 2007 [4]; Collins et al., 2007 [5]). In the present work we have tested the effect of a modified loading solvent containing a novel acid mix and optimized wash conditions on the efficiency of TiO2-based phosphopeptide enrichment in order to improve our previously published method (Mazanek et al., 2007 [6]). Applied to a test mixture of synthetic and BSA-derived peptides, the new method showed improved selectivity for phosphopeptides, whilst retaining a high recovery rate. Application of the new enrichment method to digested purified protein complexes resulted in the identification of a significantly higher number of phosphopeptides as compared to the previous method. Additionally, we have compared the performance of TiO2 and ZrO2 columns for the isolation and identification of phosphopeptides from purified protein complexes and found that for our test set, both media performed comparably well. In summary, our improved method is highly effective for the enrichment of phosphopeptides from purified protein complexes prior to mass spectrometry, and is suitable for large-scale phosphoproteomic projects that aim to elucidate phosphorylation-dependent cellular processes.  相似文献   
8.
Sister chromatid cohesion depends on cohesin [1-3]. Cohesin associates with chromatin dynamically throughout interphase [4]. During DNA replication, cohesin establishes cohesion [5], and this process coincides with the generation of a cohesin subpopulation that is more stably bound to chromatin [4]. In mitosis, cohesin is removed from chromosomes, enabling sister chromatid separation [6]. How cohesin associates with chromatin and establishes cohesion is poorly understood. By searching for proteins that are associated with chromatin-bound cohesin, we have identified sororin, a protein that was known to be required for cohesion [7]. To obtain further insight into sororin's function, we have addressed when during the cell cycle sororin is required for cohesion. We show that sororin is dispensable for the association of cohesin with chromatin but that sororin is essential for proper cohesion during G2 phase. Like cohesin, sororin is also needed for efficient repair of DNA double-strand breaks in G2. Finally, sororin is required for the presence of normal amounts of the stably chromatin-bound cohesin population in G2. Our data indicate that sororin interacts with chromatin-bound cohesin and functions during the establishment or maintenance of cohesion in S or G2 phase, respectively.  相似文献   
9.
Pattern formation during epithelial development requires the coordination of multiple signaling pathways. Here, we investigate the functions of an ovary-enriched miRNA, miR-318, in epithelial development during Drosophila oogenesis. mir-318 maternal loss-of-function mutants were female-sterile and laid eggs with abnormal morphology. Removal of mir-318 disrupted the dorsal–anterior follicle cell patterning, resulting in abnormal dorsal appendages. mir-318 mutant females also produced thin and fragile eggshells due to impaired chorion gene amplification. We provide evidence that the ecdysone signaling pathway activates expression of miR-318 and that miR-318 cooperates with Tramtrack69 to control the switch from endocycling to chorion gene amplification during differentiation of the follicular epithelium. The multiple functions of miR-318 in oogenesis illustrate the importance of miRNAs in maintaining cell fate and in promoting the developmental transition in the female follicular epithelium.  相似文献   
10.
Wapl controls the dynamic association of cohesin with chromatin   总被引:18,自引:0,他引:18  
Cohesin establishes sister-chromatid cohesion from S phase until mitosis or meiosis. To allow chromosome segregation, cohesion has to be dissolved. In vertebrate cells, this process is mediated in part by the protease separase, which destroys a small amount of cohesin, but most cohesin is removed from chromosomes without proteolysis. How this is achieved is poorly understood. Here, we show that the interaction between cohesin and chromatin is controlled by Wapl, a protein implicated in heterochromatin formation and tumorigenesis. Wapl is associated with cohesin throughout the cell cycle, and its depletion blocks cohesin dissociation from chromosomes during the early stages of mitosis and prevents the resolution of sister chromatids until anaphase, which occurs after a delay. Wapl depletion also increases the residence time of cohesin on chromatin in interphase. Our data indicate that Wapl is required to unlock cohesin from a particular state in which it is stably bound to chromatin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号