首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2009年   1篇
  2002年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   3篇
  1986年   1篇
  1980年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Ca2+ transport in red blood cell ghosts was monitored with fura2 or quin2 incorporated as the free acid during resealing. This is the first report of active transport monitored by the fluorescent intensity of the chelator dyes fura2 (5-50 microM) or quin2 (250 microM) in hemoglobin-depleted ghosts. Since there are no intracellular compartments in ghosts and the intracellular concentrations of all assay chelator substances including calmodulin (CaM), the dyes, and ATP could be set, the intracellular concentrations of free and total Ca [( Cafree]i and [Catotal]i) could be calculated during the transport. Ghosts prepared with or without CaM rapidly extruded Ca2+ to a steady-state concentration of 60-100 nM. A 10(4)-fold gradient for Ca2+ was routinely produced in medium containing 1 mM Ca2+. During active Ca2+ extrusion, d[Cafree]i/dt was a second order function of [Cafree]i and was independent of the dye concentration, whereas d[Catotal]i/dt increased as a first order function of both the [Cafree]i and the concentration of the Ca:dye complex. CaM (5 microM) increased d[Catotal]i/dt by 400% at 1 microM [Cafree]i, while d[Cafree]i/dt increased by only 25%. From a series of experiments we conclude that chelated forms of Ca2+ serve as substrates for the pump under permissive control of the [Cafree]i, and this dual effect may explain cooperativity. Free Ca2+ is extruded, and probably also Ca2+ bound to CaM or other chelators, while CaM and the chelators are retained in the cell.  相似文献   
2.
We investigated the time course of exercise-induced lipoprotein lipase activity (LPLa) and reverse cholesterol transport (RCT) during the 24-h postexercise period. Subjects were 10 sedentary normolipidemic males [NTG; fasting triglyceride (TG) = 89.1 +/- 8.6 mg/dl] and 6 hyperlipidemic males (HTG; fasting TG = 296.8 +/- 64.0 mg/dl). Each subject performed a control trial (no exercise) and 4 exercise trials. In the exercise trials, a subject jogged on a treadmill at 60% of his maximal O(2) consumption for 1 h. Pre- and postheparin blood samples were taken before exercise (baseline) and at 4, 8, 12, and 24 h after exercise. There was no group difference in LPLa (P > 0.05) over the time points. When the LPLa data from the two groups were combined, LPLa at 24 h after exercise was higher than baseline or at 4, 8, 12 h after exercise (P < 0.05). Plasma TG and lecithin-cholesterol acyltransferase activity (LCATa) were higher in HTG than in NTG, and the total high-density lipoprotein-cholesterol (HDL(tot)-Chol) was lower in HTG than in NTG (P < 0.05). HDL(2)-Chol, LCATa, and cholesterol ester transfer protein activity did not differ during the 24-h postexercise period (P > 0.05). These results suggest that LPLa is still increasing 24 h after an acute aerobic exercise and that the magnitude of the increase in exercise-induced LPLa in HTG was similar to that in NTG. Furthermore, in the sedentary population with or without HTG, the variables related to RCT do not change during the 24-h period after exercise.  相似文献   
3.
Recently we have demonstrated that extracellular ATP acts as an excitatory neurotransmitter and enhances cell death in the presence of ferrous ions. By using a newly developed cis-parinaric acid fluorescence technique, we demonstrated that ATP, in a dose dependent manner, enhanced the increased membrane lipid peroxidation in PC12 cells when cells were incubated with micromolar FeCl2/DTP. P2 purinoceptor agonists, α,β-methylene ATP and 2-methylthio-ATP, induced PC12 cell lipid peroxidation, but to a lesser extent than ATP. ATP-induced Ca2+ influx via P2 purinoceptor activation significantly increased the intracellular Ca2+ concentration, which may have triggered a free radical generating cascade(s), and led to membrane lipid peroxidation and cell death. Since oxidative stress has been implicated in certain neurodegenerative diseases such as aging, extracellular ATP may contribute to neuronal cell death by an oxidative mechanism involving lipid peroxidation.  相似文献   
4.
Oxidative and Inflammatory Pathways in Parkinson’s Disease   总被引:2,自引:0,他引:2  
Parkinson’s disease (PD) is the second most prevalent age-related neurodegenerative disease with physiological manifestations including tremors, bradykinesia, abnormal postural reflexes, rigidity and akinesia and pathological landmarks showing losses of dopaminergic neurons in the substantia nigra. Although the etiology of PD has been intensively pursued for several decades, biochemical mechanisms and genetic and epigenetic factors leading to initiation and progression of the disease remain elusive. Environmental toxins including (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP, paraquat and rotenone have been shown to increase the risk of PD in humans. Oxidative stress remains the leading theory for explaining progression of PD. Studies with cell and animal models reveal oxidative and inflammatory properties of these toxins and their ability to activate glial cells which subsequently destroy neighboring dopaminergic neurons. This review describes pathological effects of neurotoxins on cells and signaling pathways for production of reactive oxygen species (ROS) that underline the pathophysiology of PD. Special issue article in honor of Dr. George DeVries.  相似文献   
5.
6.
7.
Evidence for cardiac sodium-calcium exchanger association with caveolin-3   总被引:2,自引:0,他引:2  
The interaction of cardiac Na+-Ca2+ exchange (NCX1) with caveolin proteins was investigated in sarcolemmal vesicles. Western blots of sarcolemmal vesicles revealed the presence of caveolin-1, -2, and -3. NCX1 co-fractionated more closely with caveolin-3 than caveolin-1 on sucrose density gradients. NCX1 has five possible caveolin-binding motifs and NCX1 co-precipitated specifically with caveolin-3. Molecular sieve column chromatography indicated that this co-precipitation was not due to incomplete solubilization of lipid raft microdomains. Cholesterol chelation in vesicles decreased NCX1 transport activity and caveolin-3 co-precipitation. NCX1 may play a role in caveolar transmembrane signaling in addition to its role in excitation-contraction coupling.  相似文献   
8.
The relationship between calcium mobilization and phospholipase D (PLD) activation in response to E-series prostaglandins (PGEs) was investigated in human erythroleukemia cells. Intracellular free Ca2+ concentration ([Ca2+]i) was increased by PGE1 and PGE2 over the same concentration range at which PLD activation was seen. Pretreatment of cells with pertussis toxin greatly inhibited the PGE-stimulated increase in [Ca2+]i, implying that a G protein participates in the PGE receptor signaling process. The peak level and also the plateau level of Ca2+ mobilization stimulated by these prostaglandins were markedly decreased in Ca(2+)-depleted medium, indicating that both extracellular and intracellular Ca2+ stores contribute to the changes in [Ca2+]i. Likewise, activation of PLD by PGE1 and PGE2 was abolished by pertussis toxin pretreatment or incubation in Ca(2+)-depleted medium. U73122, a putative phospholipase C inhibitor, blocked both Ca2+ mobilization and PLD activation in PGE-stimulated cells. Furthermore, the intracellular loading of BAPTA, a Ca2+ chelator, inhibited both Ca2+ mobilization and PLD activation by PGE1 and PGE2 in a similar dose-dependent manner. Simultaneous measurement of [Ca2+]i and PLD activity in the same cell samples indicated that PLD activity increases as a function of [Ca2+]i in a similar fashion in cells stimulated either by PGEs or by the calcium ionophore ionomycin. Taken together, these findings suggest that a rise in [Ca2+]i is necessary for PGE-stimulated PLD activity in human erythroleukemia cells.  相似文献   
9.
Ethanol-Induced Cell Death by Lipid Peroxidation in PC12 Cells   总被引:8,自引:0,他引:8  
Free radical generation is hypothesized to be the cause of alcohol-induced tissue injury. Using fluorescent cis-parinaric acid and TBARS, lipid peroxidation was shown to be increased in the presence of trace amounts of free ferrous ion in PC12 cells. This increase in lipid peroxidation was enhanced by ethanol in a dose dependent manner and also correlated with loss of cell viability, as measured by increased release of lactate dehydrogenase (LDH). Resveratrol, a potent antioxidant, had a protective effect against lipid peroxidation and cell death. These findings strongly suggest that ethanol-induced tissue injury and cell death is a free radical mediated process, and may be important in alcohol-related premature aging and other degenerative diseases.  相似文献   
10.
A rapid, easy, and accurate method for converting the fluorescence of BCECF to pH, as an alternative to the nigericin method, is described. The ratio of the fluorescence intensities for BCECF can be converted to pH between 4 and 9 by a formula similar to the one used to calculate [Ca2+]i from the fluorescence of fura2. The formula is inverted because H+ binding to BCECF causes a decrease in fluorescence, whereas Ca2+ binding to fura2 causes an increase in fluorescence. The ratio of the fluorescence intensities is a sigmoidal function of the [H+] between pH 4 and 9 with an essentially linear mid region from pH 6 to 8. This calibration procedure in cells is similar to the popular method for fura2 where ionomycin, Ca2+, and an alkaline EGTA solution are added in succession to change the intracellular pCa from 4 to 9. For BCECF in cells, a protonophore, FCCP or CCCP, is added and the cells are titrated with acid to an intracellular pH of 4 and then back to pH 9 with base by observing the gradual change in fluorescence as it asymptotically reaches its limiting minimum and maximum values. This method does not require changing the medium to one with high KCl to depolarize the membrane potential nor does the proton concentration need to be equilibrated across the plasma membrane. The technique can be used to calibrate BCECF in sheets of cells, as well as suspensions of cells over a wide range of pH sensitivities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号