首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   844篇
  免费   59篇
  国内免费   1篇
  904篇
  2024年   1篇
  2023年   16篇
  2022年   28篇
  2021年   39篇
  2020年   27篇
  2019年   35篇
  2018年   48篇
  2017年   24篇
  2016年   45篇
  2015年   56篇
  2014年   70篇
  2013年   64篇
  2012年   86篇
  2011年   79篇
  2010年   51篇
  2009年   27篇
  2008年   48篇
  2007年   27篇
  2006年   33篇
  2005年   29篇
  2004年   23篇
  2003年   18篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
排序方式: 共有904条查询结果,搜索用时 15 毫秒
1.
Comparative mineral and hormonal analyses were made on tissue culture derived truncated leaf syndrome and wild type oil palm seedlings. Mineral analysis confirmed that Boron, Zinc and chlorophyll levels were significantly lower in truncated leaf syndrome leaves than those of wild type. Hormonal analysis also revealed various cytokinin derivatives such as trans-zeatin, trans-zeatin riboside, trans-zeatin O-glucoside and trans-zeatin riboside 5??mono phosphate were significantly higher in truncated leaf syndrome leaves compared to wild type leaves. Brassinolide level was also significantly higher in truncated leaf syndrome leaves than those of the wild type. These observations suggest that the truncated leaf syndrome abnormality could be associated to high cytokinin and brassinosteroid production which affects the uptake of Boron and Zinc.  相似文献   
2.
Cryoconite, the dark sediment on the surface of glaciers, often aggregates into oval or irregular granules serving as biogeochemical factories. They reduce a glacier's albedo, act as biodiversity hotspots by supporting aerobic and anaerobic microbial communities, constitute one of the organic matter (OM) sources on glaciers, and are a feeder for micrometazoans. Although cryoconite granules have multiple roles on glaciers, their formation is poorly understood. Cyanobacteria are ubiquitous and abundant engineers of cryoconite hole ecosystems. This study tested whether cyanobacteria may be responsible for cryoconite granulation as a sole biotic element. Incubation of Greenlandic, Svalbard, and Scandinavian cyanobacteria in different nutrient availabilities and substrata for growth (distilled water alone and water with quartz powder, furnaced cryoconite without OM, or powdered rocks from glacial catchment) revealed that cyanobacteria bind mineral particles into granules. The structures formed in the experiment resembled those commonly observed in natural cryoconite holes: they contained numerous cyanobacterial filaments protruding from aggregated mineral particles. Moreover, all examined strains were confirmed to produce extracellular polymeric substances (EPS), which suggests that cryoconite granulation is most likely due to EPS secretion by gliding cyanobacteria. In the presence of water as the only substrate for growth, cyanobacteria formed mostly carpet-like mats. Our data empirically prove that EPS-producing oscillatorialean cyanobacteria isolated from the diverse community of cryoconite microorganisms can form granules from mineral substrate and that the presence of the mineral substrate increases the probability of the formation of these important and complex biogeochemical microstructures on glaciers.  相似文献   
3.
Purine cyclin-dependent kinase inhibitors have been recognized as promising candidates for the treatment of various cancers; nevertheless, data regarding interaction of these substances with drug efflux transporters is still lacking. Recently, we have demonstrated inhibition of breast cancer resistance protein (ABCG2) by olomoucine II and purvalanol A and shown that these compounds are able to synergistically potentiate the antiproliferative effect of mitoxantrone, an ABCG2 substrate. In this follow up study, we investigated whether olomoucine II and purvalanol A are transported by ABCG2 and ABCB1 (P-glycoprotein). Using monolayers of MDCKII cells stably expressing human ABCB1 or ABCG2, we demonstrated that olomoucine II, but not purvalanol A, is a dual substrate of both ABCG2 and ABCB1. We, therefore, assume that pharmacokinetics of olomoucine II will be affected by both ABCB1 and ABCG2 transport proteins, which might potentially result in limited accumulation of the compound in tumor tissues or lead to drug-drug interactions. Pharmacokinetic behavior of purvalanol A, on the other hand, does not seem to be affected by either ABCG2 or ABCB1, theoretically favoring this drug in the potential treatment of efflux transporter-based multidrug resistant tumors. In addition, we observed intensive sulfatation of olomoucine II in MDCKII cell lines with subsequent active efflux of the metabolite out of the cells. Therefore, care should be taken when performing pharmacokinetic studies in MDCKII cells, especially if radiolabeled substrates are used; the generated sulfated conjugate may largely contaminate pharmacokinetic analysis and result in misleading interpretation. With regard to chemical structures of olomoucine II and purvalanol A, our data emphasize that even drugs with remarkable structure similarity may show different pharmacokinetic behavior such as interactions with ABC transporters or biotransformation enzymes.  相似文献   
4.
The earliest pterygote (winged insect), dated from the Lower Carboniferous (Namurian A/E1, circa 324 millions years ago) is described from the Upper Silesian Basin in the Czech Republic. On the basis of its wing venation, it is attributed to the Archaeorthoptera Béthoux and Nel, 2002, crown group of the “Orthoptera”. Besides Apterygota (Collembola and Archaeognatha) known from the Lower Devonian, extremely rare pterygote insects are known from Lower Carboniferous deposits when they first appeared. The present discovery supports the hypothesis of the presence of the ancestor lineage of the orthopteroid in the Lower Carboniferous ecosystems.  相似文献   
5.

This paper reports on a systematic study of the plasmonic properties of periodic arrays of gold cylindrical nanoparticles in contact with a gold thin film. Depending on the gold film thickness, it observes several plasmon bands. Using a simple analytical model, it is able to assign all these modes and determine that they are due to the coupling of the grating diffraction orders with the propagating surface plasmons travelling along the film. With finite difference time domain (FDTD) simulations, it demonstrates that large field enhancement occurs at the surface of the nanocylinders due to the resonant excitation of these modes. By tilting the sample, it also observes the evolution of the spectral position of these modes and their tuning through nearly the whole visible range is possible. Such plasmonic substrates combining both advantages of the propagative and localised surface plasmons could have large applications in enhanced spectroscopies.

  相似文献   
6.
Coevolutionary processes that drive the patterns of host–parasite associations can be deduced through congruence analysis of their phylogenies. Feather lice and their avian hosts have previously been used as typical model systems for congruence analysis; however, such analyses are strongly biased toward nonpasserine hosts in the temperate zone. Further, in the Afrotropical region especially, cospeciation studies of lice and birds are entirely missing. This work supplements knowledge of host–parasite associations in lice using cospeciation analysis of feather lice (genus Myrsidea and the Brueelia complex) and their avian hosts in the tropical rainforests of Cameroon. Our analysis revealed a limited number of cospeciation events in both parasite groups. The parasite–host associations in both louse groups were predominantly shaped by host switching. Despite a general dissimilarity in phylogeny for the parasites and hosts, we found significant congruence in host–parasite distance matrices, mainly driven by associations between Brueelia lice and passerine species of the Waxbill (Estrildidae) family, and Myrsidea lice and their Bulbul (Pycnonotidae) host species. As such, our study supports the importance of complex biotic interactions in tropical environments.  相似文献   
7.
Microtubules are dynamic polymers that occur in eukaryotic cells and play important roles in cell division, motility, transport and signaling. They form during the process of polymerization of α- and β-tubulin dimers. Tubulin is a significant and heavily researched molecular target for anticancer drugs. Combretastatins are natural cis-stilbenes that exhibit cytotoxic properties in cultured cancer cells in vitro. Combretastatin A-4 (3′-hydroxy-3,4,4′, 5-tetramethoxy-cis-stilbene; CA-4) is a potent cytotoxic cis-stilbene that binds to β-tubulin at the colchicine-binding site and inhibits tubulin polymerization. The prodrug CA-4 phosphate is currently in clinical trials as a chemotherapeutic agent for cancer treatment. Numerous series of stilbene analogs have been studied in search of potent cytotoxic agents with the requisite tubulin-interactive properties. Microtubule-interfering agents include numerous CA-4 and transresveratrol analogs and other synthetic stilbene derivatives. Importantly, these agents are active in both tumor cells and immature endothelial cells of tumor blood vessels, where they inhibit the process of angiogenesis. Recently, computer-aided virtual screening was used to select potent tubulin-interactive compounds. This review covers the role of stilbene derivatives as a class of antitumor agents that act by targeting microtubule assembly dynamics. Additionally, we present the results of molecular modeling of their binding to specific sites on the α- and β-tubulin heterodimer. This has enabled the elucidation of the mechanism of stilbene cytotoxicity and is useful in the design of novel agents with improved anti-mitotic activity. Tubulin-interactive agents are believed to have the potential to play a significant role in the fight against cancer.  相似文献   
8.
Mitochondria have emerged as an intriguing target for anti-cancer drugs, inherent to vast majority if not all types of tumours. Drugs that target mitochondria and exert anti-cancer activity have become a focus of recent research due to their great clinical potential (which has not been harnessed thus far). The exceptional potential of mitochondria as a target for anti-cancer agents has been reinforced by the discouraging finding that even tumours of the same type from individual patients differ in a number of mutations. This is consistent with the idea of personalised therapy, an elusive goal at this stage, in line with the notion that tumours are unlikely to be treated by agents that target only a single gene or a single pathway. This endows mitochondria, an invariant target present in all tumours, with an exceptional momentum. This train of thoughts inspired us to define a class of anti-cancer drugs acting by way of mitochondrial ‘destabilisation’, termed ‘mitocans’. In this communication, we define mitocans (many of which have been known for a long time) and classify them into several classes based on their molecular mode of action. We chose the targets that are of major importance from the point of view of their role in mitochondrial destabilisation by small compounds, some of which are now trialled as anti-cancer agents. The classification starts with targets at the surface of mitochondria and ending up with those in the mitochondrial matrix. The purpose of this review is to present in a concise manner the classification of compounds that hold a considerable promise as potential anti-cancer drugs.  相似文献   
9.
10.
Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号