首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2017年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2007年   2篇
  2003年   1篇
  1985年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Many species of animal-pollinated flowers are known to vary widely in the nectar content of flowers. Some proportion of flowers in many species is apparently nectarless, and such flowers are believed to be ‘cheaters’. Cheating may explain a part of the variability in nectar content. If cheating exists as a qualitatively different strategy then we expect bimodality in the distribution of nectar content of flowers. It has been shown in a multispecies study that gregarious species have a higher proportion of cheater flowers. We studied the frequency distribution of total nectar sugar in two gregariously flowering species Lantana camara and Utricularia purpurascens, which differed in other floral and ecological characters. At the population level, both the species showed significant bimodality in the total sugar content of flowers. The obvious sources of heterogeneity in the data did not explain bimodality. In Lantana camara, bimodality was observed within flowers of some of the individual plants sampled. In Utricularia purpurascens the proportion of nectarless flowers was more in high-density patches, suggesting that the gregariousness hypothesis may work within a species as well. The results support the hypothesis of cheating as a distinct strategy since two distinct types of flowers were observed in both the species. The effect of density in Utricularia purpurascens also supports the gregariousness hypothesis.  相似文献   
2.
J Joshi  KP Karanth 《PloS one》2012,7(8):e42225

Background

There has been growing interest in integrative taxonomy that uses data from multiple disciplines for species delimitation. Typically, in such studies, monophyly is taken as a proxy for taxonomic distinctiveness and these units are treated as potential species. However, monophyly could arise due to stochastic processes. Thus here, we have employed a recently developed tool based on coalescent approach to ascertain the taxonomic distinctiveness of various monophyletic units. Subsequently, the species status of these taxonomic units was further tested using corroborative evidence from morphology and ecology. This inter-disciplinary approach was implemented on endemic centipedes of the genus Digitipes (Attems 1930) from the Western Ghats (WG) biodiversity hotspot of India. The species of the genus Digitipes are morphologically conserved, despite their ancient late Cretaceous origin.

Principal Findings

Our coalescent analysis based on mitochondrial dataset indicated the presence of nine putative species. The integrative approach, which includes nuclear, morphology, and climate datasets supported distinctiveness of eight putative species, of which three represent described species and five were new species. Among the five new species, three were morphologically cryptic species, emphasizing the effectiveness of this approach in discovering cryptic diversity in less explored areas of the tropics like the WG. In addition, species pairs showed variable divergence along the molecular, morphological and climate axes.

Conclusions

A multidisciplinary approach illustrated here is successful in discovering cryptic diversity with an indication that the current estimates of invertebrate species richness for the WG might have been underestimated. Additionally, the importance of measuring multiple secondary properties of species while defining species boundaries was highlighted given variable divergence of each species pair across the disciplines.  相似文献   
3.
Thermostabilized G protein-coupled receptors used as antigens for in vivo immunization have resulted in the generation of functional agonistic anti-β1-adrenergic (β1AR) receptor monoclonal antibodies (mAbs). The focus of this study was to examine the pharmacology of these antibodies to evaluate their mechanistic activity at β1AR. Immunization with the β1AR stabilized receptor yielded five stable hybridoma clones, four of which expressed functional IgG, as determined in cell-based assays used to evaluate cAMP stimulation. The antibodies bind diverse epitopes associated with low nanomolar agonist activity at β1AR, and they appeared to show some degree of biased signaling as they were inactive in an assay measuring signaling through β-arrestin. In vitro characterization also verified different antibody-receptor interactions reflecting the different epitopes on the extracellular surface of β1AR to which the mAbs bind. The anti-β1AR mAbs only demonstrated agonist activity when in dimeric antibody format, but not as the monomeric Fab format, suggesting that agonist activation may be mediated through promoting receptor dimerization. Finally, we have also shown that at least one of these antibodies exhibits in vivo functional activity at a therapeutically-relevant dose producing an increase in heart rate consistent with β1AR agonism.  相似文献   
4.
Taxonomic studies on scolopendrid centipedes have often documented variability at the individual and population levels and applied those data to questions of species delimitation, but these investigations have mostly lacked an explicit phylogenetic framework. A molecular phylogeny and recent taxonomic revision for Indian species of the scolopendrid Digitipes Attems, 1930, permit variability of traditional taxonomic characters for Scolopendridae to be mapped onto a phylogeny. Based on their fit to the tree using maximum likelihood, reliable species-level characters include the number of glabrous antennal articles, presence of a median ridge on the tergites, and presence or absence of a tarsal spur on leg 20. Characters that are conserved within and diagnostic for particular species but labile within others (typically with geographic structure) include the first tergite with paramedian sutures, presence or absence of a lateral spine on the coxopleuron, and the number of spines in a ventromedial row on the ultimate leg prefemur. Comparisons with published accounts of variability in species of other scolopendrid genera, particularly Scolopendra and Otostigmus, show that Indian Digitipes has conserved morphology in some characters that are taxonomically useful elsewhere in the family, and most of its taxonomically informative characters have analogous patterns of variability in other genera. The approach used in this study to evaluate morphological variation in a phylogenetic framework can be applied to other taxa in which morphologically cryptic species have been reported and where species diagnosis requires a combination of characters.  相似文献   
5.
The Western Ghats (WG) of south India, a global biodiversity hotspot, has experienced complex geological history being part of Gondwana landmass and encountered extensive volcanic activity at the end of Cretaceous epoch. It also has a climatically and topographically heterogeneous landscape. Thus, the WG offer a unique setting to explore the influence of ecological and geological processes on the current diversity and distribution of its biota. To this end, three explicit biogeographical scenarios were hypothesized to evaluate the distribution and diversification of wet evergreen species of the WG – (1) southern WG was a refuge for the wet evergreen species during the Cretaceous volcanism, (2) phylogenetic breaks in the species phylogeny would correspond to geographic breaks (i.e., the Palghat gap) in the WG, and (3) species from each of the biogeographic subdivisions within the WG would form distinct clades. These hypotheses were tested on the centipede genus Digitipes from the WG which is known to be an ancient, endemic, and monophyletic group. The Digitipes molecular phylogeny was subjected to divergence date estimation using Bayesian approach, and ancestral areas were reconstructed using parsimony approach for each node in the phylogeny. Ancestral‐area reconstruction suggested 13 independent dispersal events to explain the current distribution of the Digitipes species in the WG. Among these 13 dispersals, two dispersal events were at higher level in the Digitipes phylogeny and were from the southern WG to the central and northern WG independently in the Early Paleocene, after the Cretaceous Volcanism. The remaining 11 dispersal events explained the species’ range expansions of which nine dispersals were from the southern WG to other biogeographic subdivisions in the Eocene‐Miocene in the post‐volcanic periods where species‐level diversifications occurred. Taken together, these results suggest that southern WG might have served as a refuge for Digitipes species during Cretaceous volcanism.  相似文献   
6.

Background

The hierarchical nature of medical education has been thought necessary for the safe care of patients. In this setting, medical students in particular have limited opportunities for experiential learning. We report on a student-faculty collaboration that has successfully operated an annual, short-term surgical intervention in Haiti for the last three years. Medical students were responsible for logistics and were overseen by faculty members for patient care. Substantial planning with local partners ensured that trip activities supplemented existing surgical services. A case review was performed hypothesizing that such trips could provide effective surgical care while also providing a suitable educational experience.

Findings

Over three week-long trips, 64 cases were performed without any reported complications, and no immediate perioperative morbidity or mortality. A plurality of cases were complex urological procedures that required surgical skills that were locally unavailable (43%). Surgical productivity was twice that of comparable peer institutions in the region. Student roles in patient care were greatly expanded in comparison to those at U.S. academic medical centers and appropriate supervision was maintained.

Discussion

This demonstration project suggests that a properly designed surgical trip model can effectively balance the surgical needs of the community with an opportunity to expose young trainees to a clinical and cross-cultural experience rarely provided at this early stage of medical education. Few formalized programs currently exist although the experience above suggests the rewarding potential for broad-based adoption.
  相似文献   
7.
Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.  相似文献   
8.
9.
Samanta  Aveek  Banerjee  Saptadipa  Maity  Tilak Raj  Jahnavi  Jangala  Datta  Siraj 《Protoplasma》2022,259(6):1455-1466

The drug development process is one of the important aspects of medical biology. The classical lead identification strategy in the way of drug development based on animal cell is time-consuming, expensive and involving ethical issues. The following study aims to develop a novel plant-based screening of drugs. Study shows the efficacy of certain anti-cancerous drugs (Pemetrexed, 5-Fluorouracil, Methotrexate, Topotecan and Etoposide) on a plant-based (Lathyrus sativus L.) system. Two important characteristics of cancer cells were observed in the colchicine-treated polyploid cell and the callus, where the chromosome numbers were unusual and the division of cells were uncontrolled respectively. With increasing concentration, the drugs significantly reduced the mitotic index, ploidy level and callus growth. Increasing Pemetrexed concentration decreased the plant DHFR activity. A decrease in total RNA content was observed in 5-FU and Methotrexate with increasing concentrations of the drugs. Etoposide and Topotecan inhibited plant topoisomerase II and topoisomerase I activities, which was justified through plasmid nicking and comet assay, respectively. Molecular and biochemical study revealed similar results to the animal system. The in silico study had been done, and the structural similarity of drug binding domains of L. sativus and human beings had also been established. The binding site of the selected drugs to the domains of plant target proteins was also determined. Experimental results are significant in terms of the efficacy of known anti-cancerous drugs on the plant-based system. The proposed assay system is a cost-effective, convenient and less time-consuming process for primary screening of anti-cancerous lead molecules.

  相似文献   
10.
Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.)   总被引:1,自引:0,他引:1  

Key message

Analysis of phenotypic data for 20 drought tolerance traits in 1–7 seasons at 1–5 locations together with genetic mapping data for two mapping populations provided 9 QTL clusters of which one present on CaLG04 has a high potential to enhance drought tolerance in chickpea improvement.

Abstract

Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in the arid and semi-arid regions of the world. Drought is one of the major constraints leading up to 50 % production losses in chickpea. In order to dissect the complex nature of drought tolerance and to use genomics tools for enhancing yield of chickpea under drought conditions, two mapping populations—ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261) segregating for drought tolerance-related root traits were phenotyped for a total of 20 drought component traits in 1–7 seasons at 1–5 locations in India. Individual genetic maps comprising 241 loci and 168 loci for ICCRIL03 and ICCRIL04, respectively, and a consensus genetic map comprising 352 loci were constructed (http://cmap.icrisat.ac.in/cmap/sm/cp/varshney/). Analysis of extensive genotypic and precise phenotypic data revealed 45 robust main-effect QTLs (M-QTLs) explaining up to 58.20 % phenotypic variation and 973 epistatic QTLs (E-QTLs) explaining up to 92.19 % phenotypic variation for several target traits. Nine QTL clusters containing QTLs for several drought tolerance traits have been identified that can be targeted for molecular breeding. Among these clusters, one cluster harboring 48 % robust M-QTLs for 12 traits and explaining about 58.20 % phenotypic variation present on CaLG04 has been referred as “QTL-hotspot”. This genomic region contains seven SSR markers (ICCM0249, NCPGR127, TAA170, NCPGR21, TR11, GA24 and STMS11). Introgression of this region into elite cultivars is expected to enhance drought tolerance in chickpea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号