首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   9篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
1.
Human beta 2-microglobulin (beta 2-m) was isolated from urine samples of patients with tubular dysfunctions and aggregated with glutaraldehyde. Four aggregates with molecular weights of 800,000, 480,000, 260,000, and 60,000 were separated by filtration on Sephacryl S-300. The aggregates and monomeric beta 2-m (11,800 MW) were subsequently labeled with 125I and tested for binding to streptococci. Group A streptococci bound only aggregated beta 2-m with a mean binding of 44.5%. Most of the group G streptococci, on the other hand, bound only monomeric beta 2-m with a mean binding of 58%. Among group B streptococci the serotypes with protein antigens interacted mainly with monomeric beta 2-m and those without protein antigens preferentially with aggregated beta 2-m. Nontypable group B streptococcal serotypes did not bind monomeric or aggregated beta 2-m. Of the streptococci belonging to group C, S. equisimilis reacted with monomeric beta 2-m and S. dysgalactiae with aggregated beta 2-m. S. equi did not interact with monomeric beta 2-m or aggregated beta 2-m. Bindings of monomeric beta 2-m and aggregated beta 2-m were saturable and could be inhibited by the respective unlabeled forms of beta 2-m. Fibrinogen, fibronectin, alpha 2-macroglobulin, haptoglobin, or immunoglobulin G did not inhibit the binding of either form of beta 2-m. The binding sites for monomeric beta 2-m were more susceptible to trypsin than those for aggregated beta 2-m. Treatment of streptococci with pronase destroyed their binding activities for monomeric and aggregated beta 2-m. Both monomeric beta 2-m and aggregated beta 2-m binding sites were sensitive to heat. The Scatchard plots of monomeric beta 2-m and aggregated beta 2-m were linear with Kd of 1.29 X 10(-9) M and 1.9 X 10(-9) M respectively. The number of binding sites per bacterium were estimated to be 81,000 for monomeric beta 2-m and 1,210 for aggregated beta 2-m.  相似文献   
2.
Abstract

Of the 14C labelled sugars (sucrose, glucose and fructose) and 14C proline, the incorporation of label into different lipid types was least from proline while sucrose was the preferred precursor over glucose or fructose. High incorporation into phosphatidyl inositol with 14C sucrose suggested that this phosphatide besides being a membrane component served possibly as the inositol storage component. High incorporation of label into phosphatidyl choline also suggested synthesis of new membranes during pollen tube growth.  相似文献   
3.
Acute rheumatic fever is a serious autoimmune sequela of pharyngitis caused by certain group A streptococci. One mechanism applied by streptococcal strains capable of causing acute rheumatic fever is formation of an autoantigenic complex with human collagen IV. In some geographic regions with a high incidence of acute rheumatic fever pharyngeal carriage of group C and group G streptococci prevails. Examination of such strains revealed the presence of M-like surface proteins that bind human collagen. Using a peptide array and recombinant proteins with targeted amino acid substitutions, we could demonstrate that formation of collagen complexes during streptococcal infections depends on an octapeptide motif, which is present in collagen binding M and M-like proteins of different beta-hemolytic streptococcal species. Mice immunized with streptococcal proteins that contain the collagen binding octapeptide motif developed high serum titers of anti-collagen antibodies. In sera of rheumatic fever patients such a collagen autoimmune response was accompanied by specific reactivity against the collagen-binding proteins, linking the observed effect to clinical cases. Taken together, the data demonstrate that the identified octapeptide motif through its action on collagen plays a crucial role in the pathogenesis of rheumatic fever. Eradication of streptococci that express proteins with the collagen binding motif appears advisable for controlling rheumatic fever.  相似文献   
4.
Recent epidemiological data on diseases caused by beta-hemolytic streptococci belonging to Lancefield group C and G (GCS, GGS) underline that they are an emerging threat to human health. Among various virulence factors expressed by GCS and GGS isolates from human infections, M and M-like proteins are considered important because of their anti-phagocytic activity. In addition, protein G has been implicated in the accumulation of IgG on the bacterial surface through non-immune binding. The function of this interaction, however, is still unknown. Using isogenic mutants lacking protein G or the M-like protein FOG (group G streptococci), respectively, we could show that FOG contributes substantially to IgG binding. A detailed characterization of the interaction between IgG and FOG revealed its ability to bind the Fc region of human IgG and its binding to the subclasses IgG1, IgG2, and IgG4. FOG was also found to bind IgG of several animal species. Surface plasmon resonance measurements indicate a high affinity to human IgG with a dissociation constant of 2.4 pm. The binding site was localized in a central motif of FOG. It has long been speculated about anti-opsonic functions of streptococcal Fc-binding proteins. The presented data for the first time provide evidence and, furthermore, indicate functional differences between protein G and FOG. By obstructing the interaction between IgG and C1q, protein G prevented recognition by the classical pathway of the complement system. In contrast, IgG that was bound to FOG remained capable of binding C1q, an effect that may have important consequences in the pathogenesis of GGS infections.  相似文献   
5.
To explore the interdomain co-operativity during human plasminogen (HPG) activation by streptokinase (SK), we expressed the cDNAs corresponding to each SK domain individually (alpha, beta, and gamma), and also their two-domain combinations, viz. alphabeta and betagamma in Escherichia coli. After purification, alpha and beta showed activator activities of approximately 0.4 and 0.05%, respectively, as compared with that of native SK, measured in the presence of human plasmin, but the bi-domain constructs alphabeta and betagamma showed much higher co-factor activities (3.5 and 0.7% of native SK, respectively). Resonant Mirror-based binding studies showed that the single-domain constructs had significantly lower affinities for "partner" HPG, whereas the affinities of the two-domain constructs were remarkably native-like with regards to both binary-mode as well as ternary mode ("substrate") binding with HPG, suggesting that the vast difference in co-factor activity between the two- and three-domain structures did not arise merely from affinity differences between activator species and HPG. Remarkably, when the co-factor activities of the various constructs were measured with microplasminogen, the nearly 50-fold difference in the co-factor activity between the two- and three-domain SK constructs observed with full-length HPG as substrate was found to be dramatically attenuated, with all three types of constructs now exhibiting a low activity of approximately 1-2% compared to that of SK.HPN and HPG. Thus, the docking of substrate through the catalytic domain at the active site of SK-plasmin(ogen) is capable of engendering, at best, only a minimal level of co-factor activity in SK.HPN. Therefore, apart from conferring additional substrate affinity through kringle-mediated interactions, reported earlier (Dhar et al., 2002; J. Biol. Chem. 277, 13257), selective interactions between all three domains of SK and the kringle domains of substrate vastly accelerate the plasminogen activation reaction to near native levels.  相似文献   
6.
Streptokinase (SK) is a protein co-factor with a potent capability for human plasminogen (HPG) activation. Our previous studies [1] have indicated a major role of long-range protein-protein contacts between the three domains (alpha, beta, and gamma) of SK and the multi-domain HPG substrate (K1-K5CD). To further explore this phenomenon, we prepared truncated derivatives of HPG with progressive removal of kringle domains, like K5CD, K4K5CD, K3-K5CD (K3K4K5CD), K2-K5CD (K2K3K4K5CD) and K1-K5CD (K1K2K3K4K5CD). While urokinase (uPA) cleaved the scissile peptide in the isolated catalytic domain (μPG) with nearly the same rate as with full-length HPG, SK-plasmin showed only 1-2% activity, revealing mutually distinct mechanisms of HPG catalysis between the eukaryotic and prokaryotic activators. Remarkably, with SK.HPN (plasmin), the 'addition' of both kringles 4 and 5 onto the catalytic domain showed catalytic rates comparable to full length HPG, thus identifying the dependency of the "long-range" enzyme-substrate interactions onto these two CD-proximal domains. Further, chimeric variants of K5CD were generated by swapping the kringle domains of HPG with those of uPA and TPA (tissue plasminogen activator), separately. Surprisingly, although native-like catalytic turnover rates were retained when either K1, K2 or K4 of HPG was substituted at the K5 position in K5CD, these were invariably lost once substituted with the evolutionarily more distant TPA- and uPA-derived kringles. The present results unveil a novel mechanism of SK.HPN action in which augmented catalysis occurs through enzyme-substrate interactions centered on regions in substrate HPG (kringles 4 and 5) that are spatially distant from the scissile peptide bond.  相似文献   
7.
8.
C3-like ADP-ribosyltransferases, which are produced by Clostridium botulinum, Clostridium limosum, Bacillus cereus and Staphylococcus aureus, are exoenzymes lacking a translocation unit. These enzymes specifically inactivate Rho GTPases in host target cells. Recently, a novel C3-like transferase from S. aureus with new properties was identified, raising questions regarding its function. As Rho GTPases are master regulators of several eukaryotic signal processes and S. aureus can invade eukaryotic cells, C3 might play a role as a virulence factor.  相似文献   
9.
A nontoxic phospholipase A2 was purified from the venom of Indian krait (Bungarus caeruleus) by a four-step procedure involving electrophoresis, gel filtration and ion-exchange chromatography. The recovery of the enzyme activity was 37% and the purified preparation was 38 times as active as the crude venom. The purified enzyme had a molecular weight of 12,500 and the optimum pH of 7.2. The enzyme showed higher specificity toward phosphatidylethanolamine than phosphatidylcholine. The preparation was not very labile to heat and its activity was dependent on the presence of divalent cations, calcium ions being the most effective activators. The enzyme was completely inhibited by iodoacetic acid but showed high stability against 8 M urea. Purified phospholipase A2 was nontoxic at an iv dose of 5 microgram/g mouse. The high specific activity, the high yield and the nontoxic nature of the enzyme indicate that the major form of phospholipase A2 in Bungarus caeruleus venom is not associated with any toxicity and has properties somewhat similar to that of phospholipase A2 from some other venoms.  相似文献   
10.
Serum opacity factor (SOF) is produced by group A streptococci belonging to certain M types. SOF cleaves the apolipoprotein component of the high density lipoprotein fraction of serum rendering it insoluble which in turn leads to serum opacity. SfbII protein, a fibronectin binding surface protein cloned from group A streptococci, was obtained from a strain of M75. Here we show that this protein has a second functional domain responsible for SOF activity. The fibronectin binding region was located in the C-terminal end of the protein. Deletion analysis showed that the remainder of the protein was required for SOF activity. Sequence analysis of SfbII, when compared with the published sequence of SOF22, showed 99% identity with a difference of only four amino acids. In spite of this high homology, SOF from M75 was type-specific and antibody evoked specifically inhibited only SOF produced by M75. Antibodies found in human serum following natural infection also inhibited the SOF of SfbII in a type-specific manner. The results showed that the SfbII protein from M75 is SOF with a high serotype-specific enzyme activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号