首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  2005年   3篇
排序方式: 共有23条查询结果,搜索用时 16 毫秒
1.
A viral histone H4, CpBV-H4, is encoded in the Cotesia plutellae bracovirus (CpBV) genome. This polydnavirus is symbiotic with C. plutellae, an endoparasitoid wasp. When the wasp parasitizes its host, Plutella xylostella, the symbiotic CpBV is delivered to host hemocoel and infects different internal tissues. CpBV-H4 encoded in the virus exhibits high sequence similarity to host histone H4, except for an extended N-terminal tail (38 amino acids long). When the CpBV-H4 cloned in a eukaryotic expression vector was transiently expressed in P. xylostella and a nonhost, Spodoptera exigua, it clearly inhibited several immune-associated genes, including cecropin, gloverin, serpin, apolipophorin III, and transferrin. However, its truncated construct, prepared by deleting 38 amino acids at the N-terminal tail, lost its inhibitory activity against immune-associated genes of the both species. This study has verified an inhibitory activity of CpBV-H4 against host immune-associated genes and has provided a possibility to expand its activity spectrum to the genes of other insect species.  相似文献   
2.
3.
4.
Autoinducer 2 (AI-2) is a quorum sensing molecule to which bacteria respond to regulate various phenotypes, including virulence and biofilm formation. AI-2 plays an important role in the formation of a subgingival biofilm composed mostly of Gram-negative anaerobes, by which periodontitis is initiated. The aim of this study was to evaluate D-galactose as an inhibitor of AI-2 activity and thus of the biofilm formation of periodontopathogens. In a search for an AI-2 receptor of Fusobacterium nucleatum, D-galactose binding protein (Gbp, Gene ID FN1165) showed high sequence similarity with the ribose binding protein (RbsB), a known AI-2 receptor of Aggregatibacter actinomycetemcomitans. D-Galactose was evaluated for its inhibitory effect on the AI-2 activity of Vibrio harveyi BB152 and F. nucleatum, the major coaggregation bridge organism, which connects early colonizing commensals and late pathogenic colonizers in dental biofilms. The inhibitory effect of D-galactose on the biofilm formation of periodontopathogens was assessed by crystal violet staining and confocal laser scanning microscopy in the absence or presence of AI-2 and secreted molecules of F. nucleatum. D-Galactose significantly inhibited the AI-2 activity of V. harveyi and F. nucleatum. In addition, D-galactose markedly inhibited the biofilm formation of F. nucleatum, Porphyromonas gingivalis, and Tannerella forsythia induced by the AI-2 of F. nucleatum without affecting bacterial growth. Our results demonstrate that the Gbp may function as an AI-2 receptor and that galactose may be used for prevention of the biofilm formation of periodontopathogens by targeting AI-2 activity.  相似文献   
5.
The ubiquitin ligases, SCF complexes, consist of Cul1, Skp1, Rbx1 and the substrate recognition components F-box proteins. Previous studies have reported that one of these F-box proteins, Fbl12, which is produced by Fbxl12 gene, regulates both cell cycle and differentiation. In this paper, we show that the intronic region of Fbxl12 gene acts as an alternative promoter and induces expression of a short form of Fbl12 that lacks F-box domain (Fbl12ΔF). We also found that UV irradiation increases Fbl12ΔF mRNA in cells. Finally, Fbl12ΔF may promote the subcellular localization of Fbl12 from nucleus to cytoplasm through their binding. Our data provide the possibility that Fbl12ΔF induced by alternative promoter controls the SCFFbl12 activity in response to UV stimulation.  相似文献   
6.
7.
Fermentative butanol production by Clostridia   总被引:1,自引:0,他引:1  
Butanol is an aliphatic saturated alcohol having the molecular formula of C(4)H(9)OH. Butanol can be used as an intermediate in chemical synthesis and as a solvent for a wide variety of chemical and textile industry applications. Moreover, butanol has been considered as a potential fuel or fuel additive. Biological production of butanol (with acetone and ethanol) was one of the largest industrial fermentation processes early in the 20th century. However, fermentative production of butanol had lost its competitiveness by 1960s due to increasing substrate costs and the advent of more efficient petrochemical processes. Recently, increasing demand for the use of renewable resources as feedstock for the production of chemicals combined with advances in biotechnology through omics, systems biology, metabolic engineering and innovative process developments is generating a renewed interest in fermentative butanol production. This article reviews biotechnological production of butanol by clostridia and some relevant fermentation and downstream processes. The strategies for strain improvement by metabolic engineering and further requirements to make fermentative butanol production a successful industrial process are also discussed.  相似文献   
8.
Nuclear factor-kappaB (NF-κB) is critical for the expression of multiple genes involved in inflammatory responses and cellular survival. NF-κB is normally sequestered in the cytoplasm through interaction with an inhibitor of NF-κB (IκB), but inflammatory stimulation induces proteasomal degradation of IκB, followed by NF-κB nuclear translocation. The degradation of IκB is mediated by a SCF (Skp1-Cullin1-F-box protein)-type ubiquitin ligase complex that is post-translationaly modified by a ubiquitin-like molecule Nedd8. In this study, we report that BRCA1-associated protein 2 (Brap2) is a novel Nedd8-binding protein that interacts with SCF complex, and is involved in NF-κB translocation following TNF-α stimulation. We also found a putative neddylation site in Brap2 associated with NF-κB activity. Our findings suggest that Brap2 is a novel modulator that associates with SCF complex and controls TNF-α-induced NF-κB nuclear translocation.  相似文献   
9.
A simple, rapid and robust high performance liquid chromatography-evaporative light scattering detection (HPLC-ELSD) method was established for the species discrimination and quality evaluation of Radix Bupleuri through the simultaneous determination of ten saikosaponins, namely saikosaponin-a, -b(1), -b(2), -b(3), -b(4), -c, -d, -g, -h, and -i. These compounds were chromatographed on an Ascentis(?) Express C18 column with a gradient elution of acetonitrile and water containing 0.1% acetic acid at a flow rate of 1.0 mL/min. Saikosaponins were monitored by ELSD, which was operated at a 50°C drift tube temperature and 3.0 bar nebulizer gas (N(2)) pressure. The developed method was validated with respect to linearity, intra- and inter-day accuracy and precision, limit of quantification (LOQ), recovery, robustness and stability, thereby showing good precision and accuracy, with intra- and inter-assay coefficients of variation less than 15% at all concentrations. Furthermore, a high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) method was developed to certify the existence of ten saikosaponins, as well as to confirm the reliability of ELSD. The extraction conditions of saikosaponins from Radix Bupleuri were also optimized by investigating the effect of extraction methods (sonication, reflux and maceration) and various solvents on the extraction efficiencies for saikosaponins. Sonication with 70% methanol for 40 min was found to be simple and effective for extraction of major saikosaponins. This analytical method was applied to determine saikosaponin profiles in 20 real samples consisting of four Bupleurum species, namely B. falcatum, B. chinense, B. sibiricum and the poisonous B. longiradiatum. It was found that three major saikosaponin-a, -c and -d were the major constituents in B. falcatum, B. chinense, and B. longiradiatum, while one major saikosaponin (saikosaponin-c) was not identified from B. sibiricum. In addition, no saikosaponin-b(3) was detected in B. longiradiatum samples, indicating that the toxic B. longiradiatum may be tentatively distinguished from officially listed Bupleurum species (B. falcatum and B. chinense) based on their saikosaponin profiles. Overall the simultaneous determination of ten saikosaponins in Radix Bupleuri was shown to be a promising tool to adopt for the discrimination and quality control of closely related Bupleurum species.  相似文献   
10.
Despite the notable progress that has been made with nano-bio imaging probes, quantitative nanoscale imaging of multistructured specimens such as mammalian cells remains challenging due to their inherent structural complexity. Here, we successfully performed three-dimensional (3D) imaging of mammalian nuclei by combining coherent x-ray diffraction microscopy, explicitly visualizing nuclear substructures at several tens of nanometer resolution, and optical fluorescence microscopy, cross confirming the substructures with immunostaining. This demonstrates the successful application of coherent x-rays to obtain the 3D ultrastructure of mammalian nuclei and establishes a solid route to nanoscale imaging of complex specimens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号