首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   10篇
  2011年   10篇
  2010年   3篇
  2009年   2篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  1998年   1篇
排序方式: 共有72条查询结果,搜索用时 774 毫秒
1.
2.
Molecular Biology Reports - Mu-2-related death-inducing (MuD) gene is involved in apoptosis in tumor cells. Although we have previously produced mouse monoclonal antibodies (MAbs) that specifically...  相似文献   
3.
Lee JY  Yoon JW  Kim CT  Lim ST 《Phytochemistry》2004,65(22):3033-3039
Platycodon grandiflorum A. DC (Campanulaceae) is used as a traditional oriental medicine and also as a food in Korea. Here we investigated its antioxidant activity, and isolated and identified its active compounds. Petroleum ether extracts from the whole root of P. grandiflorum were fractionated by silica gel column chromatography using a solvent gradient (petroleum ether:diethyl ether, v/v; 9:1-5:5). The 8:2 fraction showed a higher radical scavenging activity than the other fractions, and active compounds were purified from this fraction by reversed-phased HPLC. Two active compounds were identified as coniferyl alcohol esters of palmitic and oleic acids by FAB-MS, UV, IR and NMR spectroscopy. The antioxidant activities of these two compounds, which were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide and nitric oxide radical scavenging capacity, were found to be as high as those of BHT or BHA.  相似文献   
4.
Chloroquine, an antimalarial lysosomotropic base, is known for its anti-inflammatory effects and therefore used for treatment of autoimmune diseases. Given its anti-inflammatory effects, it has been under clinical trials to modify neurodegenerative processes. In this study, we examined whether chloroquine has an anti-inflammatory effect in the CNS by determining the in vitro effects of chloroquine on LPS-induced expression of cytokines by glial cells. We observed that (i) chloroquine augmented LPS-induced expression of pro-inflammatory cytokines such as lymphotoxin (LT)-beta, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1alpha, IL-1beta and IL-6 in human astroglial cells, while the same treatment suppressed LPS-induced expression of cytokines in monocytic and microglial cells; (ii) chloroquine alone induced expression of pro-inflammatory cytokines in a dose- and time-dependent manner in astroglial cells; (iii) other lysosomotropic agents such as ammonium chloride and bafilomycin A1 had minimal effects on cytokine expression; and (iv) chloroquine induced the activation of nuclear factor-kappa B in astroglial cells, which is a required component of chloroquine induction of cytokines. These results suggest that chloroquine may evoke either anti- or pro-inflammatory responses in the CNS depending on the cellular context.  相似文献   
5.
6.
Bmp2 is critical for the murine uterine decidual response   总被引:3,自引:0,他引:3       下载免费PDF全文
The process of implantation, necessary for all viviparous birth, consists of tightly regulated events, including apposition of the blastocyst, attachment to the uterine lumen, and differentiation of the uterine stroma. In rodents and primates the uterine stroma undergoes a process called decidualization. Decidualization, the process by which the uterine endometrial stroma proliferates and differentiates into large epithelioid decidual cells, is critical to the establishment of fetal-maternal communication and the progression of implantation. The role of bone morphogenetic protein 2 (Bmp2) in regulating the transformation of the uterine stroma during embryo implantation in the mouse was investigated by the conditional ablation of Bmp2 in the uterus using the (PR-cre) mouse. Bmp2 gene ablation was confirmed by real-time PCR analysis in the PR-cre; Bmp2fl/fl (termed Bmp2d/d) uterus. While littermate controls average 0.9 litter of 6.2+/-0.7 pups per month, Bmp2d/d females are completely infertile. Analysis of the infertility indicates that whereas embryo attachment is normal in the Bmp2d/d as in control mice, the uterine stroma is incapable of undergoing the decidual reaction to support further embryonic development. Recombinant human BMP2 can partially rescue the decidual response, suggesting that the observed phenotypes are not due to a developmental consequence of Bmp2 ablation. Microarray analysis demonstrates that ablation of Bmp2 leads to specific gene changes, including disruption of the Wnt signaling pathway, Progesterone receptor (PR) signaling, and the induction of prostaglandin synthase 2 (Ptgs2). Taken together, these data demonstrate that Bmp2 is a critical regulator of gene expression and function in the murine uterus.  相似文献   
7.
Jo M  Ahn JY  Lee J  Lee S  Hong SW  Yoo JW  Kang J  Dua P  Lee DK  Hong S  Kim S 《Oligonucleotides》2011,21(2):85-91
The development of reagents with high affinity and specificity to small molecules is crucial for the high-throughput detection of chemical compounds, such as toxicants or pollutants. Aptamers are short and single-stranded (ss) oligonucleotides able to recognize target molecules with high affinity. Here, we report the selection of ssDNA aptamers that bind to Bisphenol A (BPA), an environmental hormone. Using SELEX process, we isolated high affinity aptamers to BPA from a 10(15) random library of 60 mer ssDNAs. The selected aptamers bound specifically to BPA, but not to structurally similar molecules, such as Bisphenol B with one methyl group difference, or 4,4'-Bisphenol with 2 methyl groups difference. Using these aptamers, we developed an aptamer-based sol-gel biochip and detected BPA dissolved in water. This novel BPA aptamer-based detection can be further applied to the universal and high-specificity detection of small molecules.  相似文献   
8.
D-apiose serves as the binding site for borate cross-linking of rhamnogalacturonan II (RG-II) in the plant cell wall, and biosynthesis of D-apiose involves UDP-D-apiose/UDP-D-xylose synthase catalyzing the conversion of UDP-D-glucuronate to a mixture of UDP-D-apiose and UDP-D-xylose. In this study we have analyzed the cellular effects of depletion of UDP-D-apiose/UDP-D-xylose synthases in plants by using virus-induced gene silencing (VIGS) of NbAXS1 in Nicotiana benthamiana. The recombinant NbAXS1 protein exhibited UDP-D-apiose/UDP-D-xylose synthase activity in vitro. The NbAXS1 gene was expressed in all major plant organs, and an NbAXS1-green fluorescent protein fusion protein was mostly localized in the cytosol. VIGS of NbAXS1 resulted in growth arrest and leaf yellowing. Microscopic studies of the leaf cells of the NbAXS1 VIGS lines revealed cell death symptoms including cell lysis and disintegration of cellular organelles and compartments. The cell death was accompanied by excessive formation of reactive oxygen species and by induction of various protease genes. Furthermore, abnormal wall structure of the affected cells was evident including excessive cell wall thickening and wall gaps. The mutant cell walls contained significantly reduced levels of D-apiose as well as 2-O-methyl-L-fucose and 2-O-methyl-D-xylose, which serve as markers for the RG-II side chains B and A, respectively. These results suggest that VIGS of NbAXS1 caused a severe deficiency in the major side chains of RG-II and that the growth defect and cell death was likely caused by structural alterations in RG-II due to a D-apiose deficiency.  相似文献   
9.
Uterine receptivity implies a dialogue between the hormonally primed maternal endometrium and the free-floating blastocyst. Endometrial stromal cells proliferate, avert apoptosis, and undergo decidualization in preparation for implantation; however, the molecular mechanisms that underlie differentiation into the decidual phenotype remain largely undefined. The Notch family of transmembrane receptors transduce extracellular signals responsible for cell survival, cell-to-cell communication, and differentiation, all fundamental processes for decidualization and pregnancy. Using a murine artificial decidualization model, pharmacological inhibition of Notch signaling by γ-secretase inhibition resulted in a significantly decreased deciduoma. Furthermore, a progesterone receptor (PR)-Cre Notch1 bigenic (Notch1(d/d)) confirmed a Notch1-dependent hypomorphic decidual phenotype. Microarray and pathway analysis, following Notch1 ablation, demonstrated significantly altered signaling repertoire. Concomitantly, hierarchical clustering demonstrated Notch1-dependent differences in gene expression. Uteri deprived of Notch1 signaling demonstrated decreased cellular proliferation; namely, reduced proliferation-specific antigen, Ki67, altered p21, cdk6, and cyclinD activity and an increased apoptotic-profile, cleaved caspase-3, Bad, and attenuated Bcl2. The results demonstrate that the preimplantation uterus relies on Notch signaling to inhibit apoptosis of stromal fibroblasts and regulate cell cycle progression, which together promotes successful decidualization. In summary, Notch1 signaling modulates multiple signaling mechanisms crucial for decidualization and these studies provide additional perspectives to the coordination of multiple signaling modalities required during decidualization.  相似文献   
10.
Moon EY  Lee GH  Lee MS  Kim HM  Lee JW 《Life sciences》2012,90(9-10):373-380
AimsWe investigated whether cAMP-mediated protein kinase A(PKA) and Epac1/Rap1 pathways differentially affect brain tumor cell death using 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone(rolipram), specific phosphodiesterase type IV(PDE IV) inhibitor.Main methodsA172 and U87MG human glioblastoma cells were used. Percentage of cell survival was determined by MTT assay. PKA and Epac1/Rap1 activation was determined by western blotting and pull-down assay, respectively. Cell cycle and hypodiploid cell formation were assessed by flow cytometry analysis.Key findingsNon-specific PDE inhibitors, isobutylmethylxanthine(IBMX) and theophylline reduce survival percentage of A172 and U87MG cells. The expression of PDE4A and PDE4B was detected in A172 and U87MG cells. Rolipram-treated A172 or U87MG cell survival was lower in the presence of forskolin, adenylate cyclase activator, than that in its absence. Co-treatment with rolipram and forskolin also enhanced CREB phosphorylation on serine 133 that was inhibited by H-89, PKA inhibitor and cAMP-responsive guanine nucleotide exchange factor 1(Epac1), a Rap GDP exchange factor-mediated Rap1 activity in A172 cells. When A172 cells were treated with cell-permeable dibutyryl-cAMP(dbcAMP), PKA activator or 8-(4-chloro-phenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate(CPT), Epac1 activator, basal level of cell death was increased and cell cycle was arrested at the phase of G2/M. Rolipram-induced A172 cell death was also increased by the co-treatment with dbcAMP or CPT, but it was inhibited by the pre-treatment with H-89.SignificanceThese findings demonstrate that PKA and Epac1/Rap1 pathways could cooperatively play a role in rolipram-induced brain tumor cell death. It suggests that rolipram might regulate glioblastoma cell density through dual pathways of PKA- and Epac1/Rap1-mediated cell death and cell cycle arrest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号