首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   2篇
  86篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2015年   8篇
  2014年   3篇
  2013年   8篇
  2012年   7篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1989年   1篇
  1986年   1篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
2.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   
3.
4.
Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson’s disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating the synaptic activity.  相似文献   
5.
In this study, we identified and characterized an N-ethyl-N-nitrosourea (ENU) induced mutation in Usp14 (nmf375) that leads to adult-onset neurological disease. The nmf375 mutation causes aberrant splicing of Usp14 mRNA, resulting in a 95% reduction in USP14. We previously showed that loss of USP14 in ataxia (ax J) mice results in reduced ubiquitin levels, motor endplate disease, Purkinje cell axonal dystrophy and decreased hippocampal paired pulse facilitation (PPF) during the first 4-6 weeks of life, and early postnatal lethality by two months of age. Although the loss of USP14 is comparable between the nmf375 and ax J mice, the nmf375 mice did not exhibit these ax J developmental abnormalities. However, by 12 weeks of age the nmf375 mutants present with ubiquitin depletion and motor endplate disease, indicating a continual role for USP14-mediated regulation of ubiquitin pools and neuromuscular junction (NMJ) structure in adult mice. The observation that motor endplate disease was only seen after ubiquitin depletion suggests that the preservation of NMJ structure requires the stable maintenance of synaptic ubiquitin pools. Differences in genetic background were shown to affect ubiquitin expression and dramatically alter the phenotypes caused by USP14 deficiency.  相似文献   
6.
7.
Prenatal stress is a neuropsychiatric risk factor, and effects may be mediated by prenatal oxidative stress. Cell types in the brain sensitive to oxidative stress—cortical microglia and cortical and hippocampal interneurons—may be altered by oxidative stress generated during prenatal stress and may be neurobiological substrates for altered behavior. Our objective was to determine the critical nature of oxidative stress in prenatal stress effects by manipulating prenatal antioxidants. CD1 mouse dams underwent restraint embryonic day 12 to 18 three times daily or no stress and received intraperitoneal injections before each stress period of vehicle, N-acetylcysteine (200 mg/kg daily), or astaxanthin (30 mg/kg before first daily stress, 10 mg/kg before second/third stresses). Adult male and female offspring behavior, microglia, and interneurons were assessed. Results supported the hypothesis that prenatal stress-induced oxidative stress affects microglia; microglia ramification increased after prenatal stress, and both antioxidants prevented these effects. In addition, N-acetylcysteine or astaxanthin was effective in preventing distinct male and female interneuron changes; decreased female medial frontal cortical parvalbumin interneurons was prevented by either antioxidant; increased male medial frontal cortical parvalbumin interneurons was prevented by N-acetylcysteine and decreased male hippocampal GAD67GFP+ cells prevented by astaxanthin. Prenatal stress-induced increased anxiety-like behavior and decreased sociability were not prevented by prenatal antioxidants. Sensorimotor gating deficits in males was partially prevented by prenatal astaxanthin. This study demonstrates the importance of oxidative stress for persistent impacts on offspring cortical microglia and interneurons, but did not link these changes with anxiety-like, social, and sensorimotor gating behaviors.  相似文献   
8.
Alternaria alternata is a common fungal parasite on fruits and other plants and produces a number of mycotoxins, including alternariol (3,7,9-trihydroxy-1-methyl-6H-dibenzo [b,d]pyran-6-one), alternariol monomethyl ether (3,7-dihydroxy-9-methoxy-1-methyl-6H-dibenzo[b,d]pyran-6-one), and the mutagen altertoxin I {[1S-(1α,12aβ,12bα)] 1,2,11,12,12a, 12b-hexahydro-1,4,9,12a-tetrahydroxy-3,10-perylenedione}. Alternariol and alternariol monomethyl ether have previously been detected in some samples of fruit beverages. Stability studies of these toxins as well as altertoxin I added to fruit juices and wine (10–100 ng/mL) were carried out. To include altertoxin I in the analysis, cleanup with a polymer-based Varian Abselut solid phase extraction column was used, as recoveries from C-18 columns were low. The stabilities of alternariol and alternariol monomethyl ether in a low acid apple juice containing no declared vitamin C were compared with those in the same juice containing added vitamin C (60 mg/175 ml); there were no apparent losses at room temperature over 20 days or at 80°C after 20 min. in either juice. Altertoxin I was moderately stable in pH 3 buffer (75% remaining after a two week period). Furthermore, altertoxin I was stable or moderately stable in three brands of apple juice tested over 1–27 day periods and in a sample of red grape juice over 7 days. It is concluded that altertoxin I is sufficiently stable to be found in fruit juices and should be included in methods for alternariol and alternariol monomethyl ether.  相似文献   
9.
Rhizosphere is the complex place of numerous interactions between plant roots, microbes and soil fauna. Whereas plant interactions with aboveground organisms are largely described, unravelling plant belowground interactions remains challenging. Plant root chemical communication can lead to positive interactions with nodulating bacteria, mycorriza or biocontrol agents or to negative interactions with pathogens or root herbivores. A recent study1 suggested that root exudates contribute to plant pathogen resistance via secretion of antimicrobial compounds. These findings point to the importance of plant root exudates as belowground signalling molecules, particularly in defense responses. In our report,2 we showed that under Fusarium attack the barley root system launched secretion of phenolic compounds with antimicrobial activity. The secretion of de novo biosynthesized t-cinnamic acid induced within 2 days illustrates the dynamic of plant defense mechanisms at the root level. We discuss the costs and benefits of induced defense responses in the rhizosphere. We suggest that plant defense through root exudation may be cultivar dependent and higher in wild or less domesticated varieties.Key words: root exudates, plant defense, t-cinnamic acid, fusarium, induced defensePlants grow and live in very complex and changing ecosystems. Because plants lack the mobility to escape from attack by pathogens or herbivores, they have developed constitutive and in addition inducible defenses that are triggered by spatiotemporally dynamic signaling mechanisms. These defenses counteract the aggressor directly via toxins or defense plant structures or indirectly by recruitment of antagonists of aggressors. Whereas induced defenses are well described in aboveground interactions, evidence of the occurrence of such mechanisms in belowground interactions remains limited. The biosynthesis of a defensive molecule could be both constitutive and inducible with a low level of a preformed pool (Fig. 1). In addition, upon encounter of an attacking organism, those levels could be induced to rise locally to a high level of active compound that is able to disarm the pathogen.2,3 Only a few examples show that root exudates play a role in induced plant defense. Hairy roots of Ocimum basilicum secrete rosmarinic acid only when challenged by the pathogenic fungus Pythium ultimum.4 Wurst et al.5 reported on the induction of irridoid glycosides in root exudates of Plantago lanceolata in presence of nematodes. In vivo labelling experiments2 with 13CO2 showed the induction of phenolic compounds secreted by barley roots after Fusarium graminearum infection and the de novo biosynthesis of root secreted t-cinnamic acid within 2 days. These results show that the pool of induced t-cinnamic acid originated from both pre-formed and newly formed carbon pools (Fig. 1), highlighting a case of belowground induced defense inside and outside the root system.Open in a separate windowFigure 1Suggested mechanisms for the induction of root defense exudates in barley in response to Fusarium attack. Upon pathogen attack by Fusarium, the initial preformed pool of phenolic compounds is increased by the addition of inducible, de novo biosynthesized t-cinnamic acid. Both, the preformed pool and the de novo biosynthesized pool fuel the exudation of defense compounds from infected roots.The concept of fitness costs is frequently presented to explain the coexistence of both constitutive and induced defense.6 In the case of induced defense, resources are invested in defenses only when the plant is under attack. In the absence of an infection, plants can optimize allocation of their resources to reproduction and growth to compete with neighbours.7 Constitutive defenses are thought to be more beneficial when the probability of attack is high, whereas adjustable, induced defenses are more valuable to fight against an unpredictable pathogen. Non disturbed soil is a heterogeneous matrix where biodiversity is very high and patchy8,9 and organism motility is rather restricted.10 As a consequence of the patchiness, belowground environment is expected to be favourable to selection for induced responses.11 The absence of defense root exudates between two infections may form an unpredictable environment for soil pathogens and reduce the chance for adaptation of root attackers. Plants may also use escape strategies to reduce the effect of belowground pathogens. Henkes et al. (unpublished) showed that Fusarium-infected barley plants reduced carbon allocation towards infected roots within a day and increased allocation carbon to uninfected roots. These results illustrate how reallocation of carbon toward non infected root parts represents a way to limit the negative impact of root infection.We have demonstrated the potential of barley plants to defend themselves against soil pathogen by root exudation.2 Even the barley cultivar ‘Barke’ used in our study, a modern cultivated variety, was able to launch defense machinery via exudation of antimicrobial compounds when infected by F. graminearum. We suggest that plant defense through root exudation might be cultivar dependent and perhaps higher in wild or less domesticated varieties. Taddei et al.12 reported that constitutivelyproduced root exudates from a resistant Gladiolus cultivar inhibit spore germination of Fusarium oxysporum whereas root exudates from a susceptible cultivar do not affect F. oxysporum germination. Root exudates from the resistant cultivar contained higher amounts of aromaticphenolic compounds compared to the susceptible cultivar and these compounds may be responsible for the inhibition of spore germination. Metabolic profiling of wheat cultivars, ‘Roblin’ and ‘Sumai3’, respectively, susceptible and resistant to Fusarium Head Blight, showed that t-cinnamic acid was a discriminating factor responsible for resistance/defense function.13 Therefore it is likely that wild barley varieties hold higher defense capacities compare to cultivated varieties selected for high yield. In the future, plant breeders in organic and low-input farming could use root-system defense ability as new trait in varietal variation.  相似文献   
10.
The hematology of the laboratory mouse has beenwell characterized. Normal genetic differences at thealpha- and beta-globin gene loci serve as useful markersfor a wide variety of types of experimental studies. There are a number of naturallyoccurring or induced mutations that disrupt globinexpression and produce thalassemic phenotypes. Inaddition, much has been learned of the workings of theglobin locus control region from studies of transgenicmice, including those with mutations induced by targetedsite-specific modifications. After a new mutation ortransgene has been created, it must be maintained in living mice, and the genotypes of theoffspring must be ascertained. While it is possible todetermine genotypes by DNA analyses, such assays aretime consuming and relatively expensive. An osmoticchallenge test -- originally developed for thegenotyping of large-deletion alpha-thalassemia mutationsin mice -- has proven useful in detecting bothsevere and milder alpha- and beta-thalassemias, as wellas some transgenic genotypes in mice carrying human globin genes.Reliable genotyping can, in some cases, be completedwithin a few minutes with minimal expense.Quantification of red cell fragility for a variety ofthalassemic and transgenic mice is described here, alongwith a simplified test suitable for rapid, routinegenotyping. The osmotic challenge test is perfectlyreliable for distinguishing genotypes that causesignificantly decreased release of hemoglobin from the redcells, but it is also useful for some of the conditionsin which overall erythrocyte osmotic fragility isessentially normal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号