首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6703篇
  免费   458篇
  国内免费   3篇
  7164篇
  2022年   35篇
  2021年   69篇
  2020年   35篇
  2019年   59篇
  2018年   62篇
  2017年   54篇
  2016年   97篇
  2015年   197篇
  2014年   230篇
  2013年   311篇
  2012年   349篇
  2011年   372篇
  2010年   303篇
  2009年   257篇
  2008年   348篇
  2007年   373篇
  2006年   368篇
  2005年   344篇
  2004年   370篇
  2003年   351篇
  2002年   365篇
  2001年   95篇
  2000年   81篇
  1999年   110篇
  1998年   130篇
  1997年   85篇
  1996年   89篇
  1995年   99篇
  1994年   79篇
  1993年   88篇
  1992年   71篇
  1991年   63篇
  1990年   76篇
  1989年   57篇
  1988年   61篇
  1987年   43篇
  1986年   51篇
  1985年   36篇
  1984年   70篇
  1983年   55篇
  1982年   66篇
  1981年   74篇
  1980年   60篇
  1979年   55篇
  1978年   45篇
  1977年   43篇
  1976年   35篇
  1975年   35篇
  1974年   38篇
  1973年   20篇
排序方式: 共有7164条查询结果,搜索用时 15 毫秒
1.
In this article, I review the major characteristics of different types of appendage‐like processes that develop at the abdominal segments of many immature insects, and I discuss their controversial morphological value. The main question is whether the abdominal processes are derived from segmental appendages serially homologous to thoracic legs, or whether they are “secondary” outgrowths not homologous with true appendages. Morphological and embryological data, in particular, a comparison with the structure and development of the abdominal appendages in primitive apterygote hexapods, and data from developmental genetics, support the hypothesis of appendicular origin of many of the abdominal processes present in the juvenile stages of various pterygote orders. For example, the lateral processes, such as the tracheal gills in aquatic nymphs of exopterygote insects, are regarded as derived from lateral portions of appendage primordia, homologous with the abdominal styli of apterygotan insects; these processes correspond either to rudimentary telopodites or to coxal exites. The ventrolateral processes, such as the prolegs of different endopterygote insect larvae, appear to be derived from medial portions of the appendicular primordia; they correspond to coxal endites. These views lead to the rejection of Hinton's hypothesis (Hinton [1955] Trans R Entomol Soc Lond 106:455–545) according to which all the abdominal processes of insect larvae are secondary outgrowths not derived from true appendage anlagen. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
Transformation in vitro of bone marrow cells by avian erythroblastosis virus (AEV) gives rise to rapidly growing cells of erythroid nature. Target cells of neoplastic transformation by AEV are recruited among the early progenitors of the erythroid lineage, the burst-forming units-erythroid (BFU-E). They express a brain-related antigen at a high level and an immature antigen at a low level. We show that AEV-transformed cells express low levels of the brain antigen and high levels of the immature antigen. Their response to specific factors regulating the erythroid differentiation indicates that they are very sensitive to erythropoietin. Furthermore, cells transformed by a temperature-sensitive mutant of AEV differentiate into hemoglobin-synthesizing cells 4 days after being shifted to the nonpermissive temperature. All these properties are similar to those of late progenitors of the erythroid lineage, the colony-forming units-erythroid (CFU-E). These results indicate that the AEV-transformed cells are blocked in their differentiation at the CFU-E stage.  相似文献   
3.
4.
In the endocytic pathway of antigen-presenting cells, HLA-DM catalyzes the exchange between class II-associated invariant chain peptide (CLIP) and antigenic peptides onto major histocompatibility complex class II molecules. At low pH of lysosomal compartments, both HLA-DM and HLA-DR undergo conformational changes, and it was recently postulated that two partially exposed tryptophans on HLA-DM might be involved in the interaction between the two molecules. To define contact regions on HLA-DM, we have conducted site-directed mutagenesis on those two hydrophobic residues. The HLA-DM alphaW62A,betaW120A (DM(W62A/W120A)) double mutant was expressed in HLA-DR(+) HeLa cells expressing invariant chain, and the activity of this DM molecule was assessed. Flow cytometry analysis of cell surface DR-CLIP complexes revealed that DM(W62A/W120A) removes CLIP as efficiently as its wild-type counterpart. DM(W62A/W120A) was found in the endocytic pathway by immunofluorescence, and DM-DR complexes were immunoprecipitated from these cells at pH 5. Finally, mutations alphaW62A and betaW120A on HLA-DM did not affect the association with HLA-DO. The complex egresses the endoplasmic reticulum and accumulates in endocytic vesicles. Moreover, DO and DM(W62A/)W120A were co-immunoprecipitated at pH 7. We conclude that the alpha62 and beta120 tryptophan residues are not required for the activity of DM, nor are they directly implicated in the interaction with DR or DO.  相似文献   
5.
In 46,XY individuals, testes are determined by the activity of the SRY gene (sex-determining region Y), located on the short arm of the Ychromosome. The other genetic components of the cascade that leads to testis formation are unknown and may be located on the Xchromosome or on the autosomes. Evidence for the existence of several loci associated with failure of male sexual development is indicated by reports of 46,XY gonadal dysgenesis associated with structural abnormalities of the Xchromosome or of autosomes (chromosomes9, 10, 11 and 17). In this report, we describe the investigation of a child presenting with multiple congenital abnormalities, mental retardation and partial testicular failure. The patient had a homogeneous de novo 46,XY,inv dup(9)(pter→p24.1::p21.1 →p23.3::p24.1→qter) chromosome complement. No deletion was found by either cytogenetic or molecular analysis. The SRY gene and DSS region showed no abnormalities. Southern blotting dosage analysis with 9p probes and fluorescent in situ hybridisation data indicated that the distal breakpoint of the duplicated fragment was located at 9p24.1, proximal to the SNF2 gene. We therefore suggest that a gene involved in normal testicular development and/or maintenance is present at this position on chromosome 9. Received: 20 January 1997 / Accepted: 5 November 1997  相似文献   
6.
7.
8.
9.
10.
Effects of N-alcohols on potassium conductance in squid giant axons   总被引:1,自引:0,他引:1  
The effect of bath application of several short chain N-alcohols on voltage-dependent potassium conductance has been studied in intact giant axons of Loligo forbesi under voltage-clamp conditions. All tested alcohols (methanol, ethanol, propanol, butanol, heptanol and octanol) were found to depress potassium conductance only at concentrations much larger than those necessary to reduce sodium conductance. The efficacy of the different molecules was correlated with the carbon-chain length. In all cases the effects were found to be at least partly reversible. Low concentrations of propanol (100 mM) or heptanol (1 mM) were found to increase potassium conductance whereas higher concentrations had the usual depressing effect. The two alcohols were found to induce a slow inactivation of the potassium conductance. A detailed analysis of the time course of the turning-on of the potassium current for various pulse potentials in the presence of TTX revealed that, for membrane potential values more positive than -20 mV, the time constant of activation was reduced in the presence of propanol or heptanol. The delay which separates the change in potential and the turning-on of the potassium current, which was systematically analysed for different pulse and prepulse potential values, was increased by the two alcohols, the curve relating this delay to prepulse potential being shifted towards larger (positive) delays. This high degree of complexity in the effects on potassium conductance suggests that the alcohol molecules modify several more or less independent mechanisms associated with the turning-on of the potassium current.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号