首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   36篇
  2024年   1篇
  2023年   4篇
  2022年   12篇
  2021年   11篇
  2020年   6篇
  2019年   11篇
  2018年   14篇
  2017年   14篇
  2016年   10篇
  2015年   16篇
  2014年   12篇
  2013年   19篇
  2012年   15篇
  2011年   8篇
  2010年   11篇
  2009年   9篇
  2008年   13篇
  2007年   12篇
  2006年   15篇
  2005年   9篇
  2004年   17篇
  2003年   8篇
  2002年   10篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1972年   1篇
  1971年   1篇
  1912年   2篇
排序方式: 共有294条查询结果,搜索用时 93 毫秒
1.
The homeobox, a 183 bp DNA sequence element, was originally identified as a region of sequence similarity between many Drosophila homeotic genes. The homeobox codes for a DNA-binding motif known as the homeodomain. Homeobox genes have been found in many animal species, including sea urchins, nematodes, frogs, mice and humans. To isolate homeobox-containing sequences from the plant Arabidopsis thaliana, a cDNA library was screened with a highly degenerate oligonucleotide corresponding to a conserved eight amino acid sequence from the helix-3 region of the homeodomain. Using this strategy two cDNA clones sharing homeobox-related sequences were identified. Interestingly, both of the cDNAs also contain a second element that potentially codes for a leucine zipper motif which is located immediately 3'' to the homeobox. The close proximity of these two domains suggests that the homeodomain-leucine zipper motif could, via dimerization of the leucine zippers, recognize dyad-symmetrical DNA sequences.  相似文献   
2.
The role of rapidly exchanging intracellular Ca2+ stores in the control of Ca2+ homeostasis is reviewed. The following issues are discussed: the reasons why such stores exist in eukaryotic cells; the differences between the terminal cisternae of the skeletal muscle sarcoplasmic reticulum, which have direct, physical connection with the T tubules of the plasmalemma, and the Ca2+ stores located in the depth of the cytoplasm, which are stimulated by second messengers; the cytological nature (subcompartments of the ER) of the rapidly exchanging Ca2+ stores and their functional significance. The conclusions introduce recent developments in which intracellular Ca2+ stores have been investigated also by molecular biology techniques.  相似文献   
3.
4.
5.
The current standard biomarker for myocardial infarction (MI) is high‐sensitive troponin. Although powerful in clinical setting, search for new markers is warranted as early diagnosis of MI is associated with improved outcomes. Extracellular vesicles (EVs) attracted considerable interest as new blood biomarkers. A training cohort used for diagnostic modelling included 30 patients with STEMI, 38 with stable angina (SA) and 30 matched‐controls. Extracellular vesicle concentration was assessed by nanoparticle tracking analysis. Extracellular vesicle surface‐epitopes were measured by flow cytometry. Diagnostic models were developed using machine learning algorithms and validated on an independent cohort of 80 patients. Serum EV concentration from STEMI patients was increased as compared to controls and SA. EV levels of CD62P, CD42a, CD41b, CD31 and CD40 increased in STEMI, and to a lesser extent in SA patients. An aggregate marker including EV concentration and CD62P/CD42a levels achieved non‐inferiority to troponin, discriminating STEMI from controls (AUC = 0.969). A random forest model based on EV biomarkers discriminated the two groups with 100% accuracy. EV markers and RF model confirmed high diagnostic performance at validation. In conclusion, patients with acute MI or SA exhibit characteristic EV biomarker profiles. EV biomarkers hold great potential as early markers for the management of patients with MI.  相似文献   
6.
The endogenous cardiac activity rhythm of the Norway lobster Nephrops norvegicus was studied under constant conditions of darkness by means of a computer-aided monitoring system (CAPMON). Time series recordings of the heart rate (beats min?1) were obtained from 47 adult males freshly collected from the continental slope (400–430?m) in the western Mediterranean. Periodogram analysis revealed the occurrence of circadian periodicity (of around 24?h) in most cases. A large percentage of animals showed significant ultradian periods (of around 12 and 18?h). The analysis of the circadian time series revealed the occurrence of peaks of heart rate activity during the expected night phase of the cycle. These results are discussed in relation to the emergence and locomotor activity rhythms of the species.  相似文献   
7.
Abstract

Analysis of the human placenta metabolome has great potential to advance the understanding of complicated pregnancies and deleterious fetal outcomes in remote populations, but samples preparation can present unique challenges. Herein, we introduce oven-drying as a simple and widely available method of sample preparation that will facilitate investigations of the placental metabolome from remote and under-studied populations. Placentae from complicated and uncomplicated pregnancies were prepared in three ways (oven-dried at 60?°C, fresh, lyophilized) for metabolome analysis via gas chromatography-mass spectrometry (GC-MS). Multiple computer models (e.g. PLS-DA, ANN) were employed to classify and determine if there was a difference in placentae metabolome and a group of metabolites with high variable importance in projection scores across the three preparations and by complicated vs. control groups. The analyses used herein were shown to be thorough and sensitive. Indeed, significant differences were detected in metabolomes of complicated vs. uncomplicated pregnancies; however, there were no statistical differences in the metabolome of placentae prepared by oven-drying vs. lyophilization vs. fresh placentae. Oven-drying is a viable sample preparation method for placentae intended for use in metabolite analysis via GC-MS. These results open many possibilities for researching metabolome patterns associated with fetal outcomes in remote and resource-poor communities worldwide.  相似文献   
8.
ABSTRACT

Rhythms can be observed at all levels of the biologic integration in humans. The observation that a biological or physiological variable shows a circadian rhythm can be explained by several multifactorial systems including external (exogenous), internal (endogenous) and psychobiological (lifestyle) mechanisms. Our body clock can be synchronized with the environment by external factors, called “synchronizers”, i.e. the light–dark cycle, but it is also negatively influenced by some pathological conditions or factors, called “chronodisruptors,” i.e. aging or low physical activity (PA). The desynchronization of a 24-h rhythm in a chronic manner has been recently defined “chronodisruption” or “circadian disruption.” A very large number of hormonal variables, such as adrenal and gonadal stress steroids, are governed by circadian rhythmicity. Such hormones, in normal conditions, show a peak in the first part of the day, while their typical diurnal fluctuations are totally out of sync in subjects affected by cancer or metabolic diseases, such as obesity, diabetes and metabolic syndrome. In general, a flatter slope with altered peaks in cortisol and testosterone circadian rhythms has been observed in pathological individuals. PA, specifically chronic exercise, seems to play a key role as synchronizer for the whole circadian system in such pathologies even if specific data on steroids circadian pattern are still sparse and contradictory. Recently, it has been proposed that low-intensity chronic PA could be an effective intervention to decrease morning cortisol levels in pathological subjects. The standardization of all confounding factors is needed to reach more clear evidence-based results.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号