首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1977年   1篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
2.
3.
Serotonin, nitric oxide (NO) and histamine are neuromodulators used in molluscan nervous systems. We have found that each of them depolarizes and increases the excitability of the serotonergic feeding neural circuit modulator neuron, MCC, of Aplysia, but each induces different changes in background ionic currents and uses a different second messenger. Stimulation of neuron C2 in the cerebral ganglion induces a vsEPSP in MCC using NO and histamine. When these neurons are isolated in culture they form synapses that mediate the vsEPSP. The ionic currents induced by these neuromodulators were investigated in isolated cultured MCCs. Histamine reduced a background outward current between -70 and -30 mV that was blocked by cobalt treatment, indicating that it is a calcium activated potassium current. Serotonin reduced a background outward current from -65 mV to -30 mV and enhanced a potassium inward current more negative than -70 mV that was blocked by cesium and barium. This response was mimicked by 8-Br-cAMP. NO donors reduced a cobalt insensitive background outward current between -70 and -30 mV. This response was mimicked by 8-Br-cGMP. These responses show that MCC can produce complex time and state-dependent activity during its modulation of the feeding neural circuit.  相似文献   
4.
5.
Serotonin (5-HT) is an excitatory neurotransmitter and neuromodulator. In the Aplysia nervous system it increases excitability and induces spike broadening in sensory neurons. It is released at the synaptic terminals of the metacerebral cells (MCCs) and modulates the feeding neural circuit and buccal muscles during the aroused feeding state. We report that MCC itself is depolarized by 5-HT and becomes excitable. 5-HT induces tonic spike activity and even spike-burst activity. Conceivably, this sensitivity to its own transmitter could provide positive feedback excitation of MCC. Voltage clamp analysis of isolated cultured MCCs shows that 5-HT reduces a calcium-dependent outward current at the resting potential (-60 mV), and enhances steady state inward currents between -55 and -30 mV and between -75 and -100 mV. 8-Br-cAMP has similar effects, suggesting that cAMP mediates the 5-HT effects, in part. A transient calcium current is enhanced at voltages more positive than -40 mV. Barium and cesium selectively block the 5-HT-induced inward current between -75 and -100 mV. Substitution of N-methyl-D-glucamine for sodium and adding cobalt block this current, also indicating that it is a hyperpolarization-activated cation current. The 5-HT-induced inward current between -55 and -30 mV is also blocked by sodium substitution and added cobalt, suggesting that 5-HT increases a depolarization-activated cation current. The outward current that remains when sodium and calcium currents are blocked is reduced by 5-HT. Thus, 5-HT enhances two different cation currents and reduces potassium currents.  相似文献   
6.
The effects of serotonin (5-HT) on membrane potential, membrane resistance, and select ionic currents were examined in large pedal neurons (LP1, LP3) of the mollusk Hermissenda. Calcium (Ca) action potentials were evoked in sodium-free artificial seawater containing tetramethylammonium, tetraethylammonium, and 4-aminopyridine (0-Na, 4-AP, TEA ASW). They failed at stimulation rates greater than 0.5/sec and were blocked by cadmium (Cd). Under voltage clamp the calcium current (ICa) responsible for them also failed with repeated stimulation. Thus, ICa inactivation accounts for refractoriness of the Ca action potential. The addition of 10 microM 5-HT to 0-Na, 4-AP, TEA ASW produced a slight depolarization and increased excitability and input resistance. Under voltage clamp the background current decreased. The voltage-dependent inward, late outward, and outward tail currents, sensitive to Cd, increased. ICa inactivation persisted. Under voltage clamp with Ca influx blocked by Cd, the addition of 10 microM 5-HT decreased the remaining current uniformly over membrane potentials of -10 to -100 mV. Thus, 5-HT reduces a background current that is active within the physiological range of the membrane potential, voltage insensitive, independent of Ca influx, noninactivating, and not blocked by 4-AP or TEA.  相似文献   
7.
The siphon withdrawal response evoked by a weak tactile (water drop) or light stimulus is mediated primarily by neurons in the siphon. Central neurons (abdominal ganglion) contribute very little since the response amplitude and latency are not changed following removal of the abdominal ganglion. Similarly, habituation and dishabituation of this withdrawal response are not different after removal of the abdominal ganglion, indicating that the peripheral neural circuit in the isolated siphon can mediate habituation itself, and thus has many of the properties attributed to central neurons. Responses evoked by electrical stimulation of the siphon nerve habituate, depending upon the stimulus intensity and interval. These habituated responses may be dishabituated by tactile or light stimulation of the siphon. These results show that each neural system, peripheral and central, has an excitatory modulatory influence on the other. Normally adaptive siphon responses must be shaped by the integrated activity of both of these neural systems.  相似文献   
8.
The eyes of certain marine gastropods including Aplysia and Bulla, contain circadian pacemakers, which produce a circadian rhythm of autogenous compound action potential (CAP) activity. The CAPs are generated by the synchronous spike discharge of a distinctive population of retinal pacemaker neurons whose axons convey the CAP activity to the CNS. When CAP activity is recorded from a preparation with eyes attached to the CNS, the CAP activity is modulated by efferent activity. In this study we have identified FMRF-amide-like immunoreactive efferent axons in the optic nerves of Bulla. These axons arborize in the basal retinal neuropil adjacent to the pacemaker neurons and are in a position to make synaptic contacts with their dendrites. Similar immunoreactive fibers are not observed in Aplysia eyes. Exogenous FMRF-amide at micromolar concentrations suppresses ongoing CAP activity in isolated eyes but does not suppress the ERG or phase shift the circadian rhythm of CAP activity. Intracellular recordings from the retinal pacemaker neurons reveal that FMRF-amide hyperpolarizes the membrane potential, suppresses spike discharge, and decreases the input resistance, suggesting that a K conductance is increased. Electrical stimulation of the region of the cerebral ganglion that contains FMRF-amide immunoreactive neurons suppresses ongoing CAP activity. All these results are consistent with the idea that the FMRF-amide immunoreactive central neurons and their axons provide a pathway for efferent modulation of the CAP rhythm generated by the retinal pacemaker neurons.  相似文献   
9.
10.
Each eye of Aplysia contains a circadian clock that produces a robust rhythm of optic nerve impulse activity. To isolate the pacemaker neurons and photoreceptors of the eye and determine their participation in the circadian clock and its generation of rhythmic autoactivity, the retina was dissociated and its cells were placed in primary cell culture. The isolated neurons and photoreceptors survived and vigorously extended neurites tipped with growth cones. Many of the photoreceptors previously described from histological sections of the intact retina were identified in culture, including the large R-type photoreceptor, which gave robust photoresponses, and the smaller tufted, whorled, and flared photoreceptors. The pacemaker neurons responsible for the rhythmic impulse activity generated by the eye were identified by their distinctive monopolar morphology and recordings were made of their activity. Isolated pacemaker neurons produced spontaneous action potentials in darkness, and pacemaker neurons attached to fragments of retina or in an isolated cluster interacted to produce robust spontaneous activity. This study establishes that isolated retinal pacemaker neurons retain their innate autoactivity and ability to produce action potentials in culture and that clusters of coupled pacemaker neurons are capable of generating robust autoactivity comparable to pacemaker neuron rhythmic activity recorded in the intact retina, which was previously shown to correspond to 1:1 with the optic nerve compound action potential activity. © 1996 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号