首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   27篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   5篇
  2015年   10篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   11篇
  2004年   6篇
  2003年   12篇
  2002年   2篇
  2001年   5篇
  2000年   12篇
  1999年   6篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1981年   4篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1968年   1篇
  1966年   1篇
  1954年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
1.
M Bandell  J S Lolkema 《Biochemistry》1999,38(32):10352-10360
The citrate transporter of Leuconostoc mesenteroides (CitP) and the malate transporter of Lactococcus lactis (MleP) are homologous proteins that catalyze citrate-lactate and malate-lactate exchange, respectively. Both transporters transport a range of substrates that contain the 2-hydroxycarboxylate motif, HO-CR(2)-COO(-) [Bandell, M., et al. (1997) J. Biol. Chem. 272, 18140-18146]. In this study, we have analyzed binding and translocation properties of CitP and MleP for a wide variety of substrates and substrate analogues. Modification of the OH or the COO(-) groups of the 2-hydroxycarboxylate motif drastically reduced the affinity of the transporters for the substrates, indicating their relevance in substrate recognition. Both CitP and MleP were strictly stereoselective when the R group contained a second carboxylate group; the S-enantiomers were efficiently bound and translocated, while the transporters had no affinity for the R-enantiomers. The affinity of the S-enantiomers, and of citrate, was at least 1 order of magnitude higher than for lactate and other substrates with uncharged R groups, indicating a specific interaction between the second carboxylate group and the protein that is responsible for high-affinity binding. MleP was not stereoselective in binding when the R groups are hydrophobic and as large as a benzyl group. However, only the S-enantiomers were translocated by MleP. CitP had a strong preference for binding and translocating the R-enantiomers of substrates with large hydrophobic R groups. These differences between CitP and MleP explain why citrate is a substrate of CitP and not of MleP. The results are discussed in the context of a model for the interaction between sites on the protein and functional groups on the substrates in the binding pockets of the two proteins.  相似文献   
2.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
3.
The distribution of the fructose carrier over the membranes of Rhodopseudomonas sphaeroides was studied in cells grown under light saturation and light limitation. Three types of membranes were isolated after disruption of the cells in a French press. All three types were present in the cells grown either under the high or low light intensity, but they were present in different quantities. The cytoplasmic membrane could be separated from the photosynthetic membranes by Sephacryl S-1000 chromatography. The cytoplasmic membrane has the highest specific density and fructose carrier content and does not contain the light-harvesting pigments. The photosynthetic membranes could be resolved into two types by sucrose density gradient centrifugation. Type A predominates when cells are grown under light saturation, whereas type B, the chromatophores, is synthesized abundantly under light limitation. The properties of type A are in between the properties of the cytoplasmic membrane and the chromatophores. It has a slightly lower specific density and contains four times less fructose carrier than the cytoplasmic membrane, but contains half of the light-harvesting bacteriochlorophyll of the chromatophore membrane. The fructose carrier content in the type B membranes, the chromatophores, is very low.  相似文献   
4.
In Leuconostoc mesenteroides subsp. mesenteroides 19D, citrate is transported by a secondary citrate carrier (CitP). Previous studies of the kinetics and mechanism of CitP performed in membrane vesicles of L. mesenteroides showed that CitP catalyzes divalent citrate HCit2-/H+ symport, indicative of metabolic energy generation by citrate metabolism via a secondary mechanism (C. Marty-Teysset, J. S. Lolkema, P. Schmitt, C. Divies, and W. N. Konings, J. Biol. Chem. 270:25370-25376, 1995). This study also revealed an efficient exchange of citrate and D-lactate, a product of citrate/carbohydrate cometabolism, suggesting that under physiological conditions, CitP may function as a precursor/product exchanger rather than a symporter. In this paper, the energetic consequences of citrate metabolism were investigated in resting cells of L. mesenteroides. The generation of metabolic energy in the form of a pH gradient (delta pH) and a membrane potential (delta psi) by citrate metabolism was found to be largely dependent on cometabolism with glucose. Furthermore, in the presence of glucose, the rates of citrate utilization and of pyruvate and lactate production were strongly increased, indicating an enhancement of citrate metabolism by glucose metabolism. The rate of citrate metabolism under these conditions was slowed down by the presence of a membrane potential across the cytoplasmic membrane. The production of D-lactate inside the cell during cometabolism was shown to be responsible for the enhancement of the electrogenic uptake of citrate. Cells loaded with D-lactate generated a delta psi upon dilution in buffer containing citrate, and cells incubated with citrate built up a pH gradient upon addition of D-lactate. The results are consistent with an electrogenic citrate/D-lactate exchange generating in vivo metabolic energy in the form of a proton electrochemical gradient across the membrane. The generation of metabolic energy from citrate metabolism in L. mesenteroides may contribute significantly to the growth advantage observed during cometabolism of citrate and glucose.  相似文献   
5.
Secondary metabolic-energy-generating systems generate a proton motive force (pmf) or a sodium ion motive force (smf) by a process that involves the action of secondary transporters. The (electro)chemical gradient of the solute(s) is converted into the electrochemical gradient of protons or sodium ions. The most straightforward systems are the excretion systems by which a metabolic end product is excreted out of the cell in symport with protons or sodium ions (energy recycling). Similarly, solutes that were accumulated and stored in the cell under conditions of abundant energy supply may be excreted again in symport with protons when conditions become worse (energy storage). In fermentative bacteria, a proton motive force is generated by fermentation of weak acids, such as malate and citrate. The two components of the pmf, the membrane potential and the pH gradient, are generated in separate steps. The weak acid is taken up by a secondary transporter either in exchange with a fermentation product (precursor/product exchange) or by a uniporter mechanism. In both cases, net negative charge is translocated into the cell, thereby generating a membrane potential. Decarboxylation reactions in the metabolic breakdown of the weak acid consume cytoplasmic protons, thereby generating a pH gradient across the membrane. In this review, several examples of these different types of secondary metabolic energy generation will be discussed.  相似文献   
6.
Growth and copper-binding of a copper-tolerant and a copper-sensitive population of Silene cucubalus (L.) Wib. have been studied. The copper-tolerant plants showed a much lower uptake and a proportionally higher transport of copper from root to shoot. A copper-binding protein with an apparent Mr of 8500 resembling metallothionein has been isolated from the roots of copper-treated plants of the tolerant population. After 20 d, the protein was observed to be inducible upon copper supply in the copper-tolerant plants, but not yet in the sensitive ones. This could be an indication of a difference in metalregulated synthesis of the protein. Ion-exchange chromatography of the 8500 protein yielded a major copper-containing fraction eluting at high ionic strength. Other characteristics such as UV absorption and amino-acid composition resembled strongly those of metallothioneins. The involvement of metallothioneins in the detoxification of copper within Cu-tolerant plants is discussed in relation to other mechanisms.Abbreviation DEAE diethyloaminoethyl  相似文献   
7.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
8.
Mannitol bound to enzyme IImtl could be trapped specifically by rapid phosphorylation with P-HPr. The assay was used to demonstrate transport of mannitol across the cytoplasmic membrane with and without phosphorylation of mannitol. The latter was 2-3 orders of magnitude slower. The fraction of bound mannitol molecules that was actually phosphorylated, the efficiency of the trap, was less than 50%. The efficiency was not very different for enzyme IImtl embedded in the membrane of vesicles with an inside-out orientation or solubilized in detergent. Subsequently, it is argued that the fraction of the bound mannitol molecules that was not phosphorylated dissociated into the cytoplasmic space. A model for the catalytic mechanism of enzyme IImtl is proposed on the basis of interpretations of the present experiments. The main features of the model are the following: (i) mechanistically, the coupling between transport and phosphorylation is less than 50%; (ii) in the physiological steady state of mannitol transport and metabolism, the coupling is 100%; (iii) phosphorylated enzyme IImtl catalyzes facilitated diffusion at a high rate; (iv) the state of phosphorylation of the cytoplasmic domain modulates the activity of the translocator domain; (v) the enzyme catalyzes phosphorylation of free cytoplasmic mannitol at least as fast as it catalyzes transport plus phosphorylation of free periplasmic mannitol.  相似文献   
9.
J S Lolkema  G T Robillard 《Biochemistry》1990,29(43):10120-10125
The original proposal of Saier stating that P-enolpyruvate-dependent mannitol phosphorylation is catalyzed by the monomeric form of the bacterial phosphotransferase enzyme IImtl, which would be the form predominantly existing in the phospholipid bilayer, whereas mannitol/mannitol-P exchange would depend on the transient formation of functional dimers, is refuted [Saier, M.H. (1980) J. Supramol. Struct. 14, 281-294]. The correct interpretation of the proportional relation between the rate of mannitol phosphorylation in the overall reaction and the enzyme concentration is that enzyme IImtl is dimeric under the conditions employed. Differences measured in the enzyme concentration dependency of the overall and exchange reactions were caused by different assay conditions. The dimer is favored over the monomer at high ionic strength and basic pH. Mg2+ ions bind specifically to enzyme IImtl, inducing dimerization. A complex formed by mixing inorganic phosphate, F-, and Mg2+ at sufficiently high concentrations inhibits enzyme IImtl, in part, by dissociation of the dimer. Enzyme IImtl was dimeric in 25 mM Tris, pH 7.6, and 5 mM Mg2+ over a large enzyme concentration range and under many different turnover conditions. The association/dissociation equilibrium was demonstrated in phosphate bufers, pH 6.3. The dimer was the most active form both in the overall and in the exchange reaction under the conditions assayed. The monomer was virtually inactive in mannitol/mannitol-P exchange but retained 25% of the activity in the overall reaction.  相似文献   
10.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号