首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  4篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
It is not known how the uptake and retention of the key osmolyte K+ in cells are mediated in growing leaf tissue. In the present study on the growing leaf 3 of barley, we have cloned the full-length coding sequence of three genes which encode putative K+ channels ( HvAKT1 , HvAKT2 , HvKCO1 / HvTPK1 ), and of one gene which encodes a putative K+ transporter ( HvHAK4 ). The functionality of the gene products of HvAKT1 and HvAKT2 was tested through expression in Xenopus laevis oocytes. Both are inward-rectifying K+ channels which are inhibited by Cs+. Function of HvAKT1 in oocytes requires co-expression of a calcineurin-interacting protein kinase ( At CIPK23) and a calcineurin B-like protein (AtCBL9) from Arabidopsis , showing cross-species complementation of function. In planta , HvAKT1 is expressed primarily in roots, but is also expressed in leaf tissue. HvAKT2 is expressed particularly in leaf tissue, and HvHAK4 is expressed particularly in growing leaf tissue. Within leaves, HvAKT1 and HvAKT2 are expressed predominantly in mesophyll. Expression of genes changes little in response to low external K+ or salinity, despite major changes in K+ concentrations and osmolality of cells. Possible contributions of HvAKT1 , HvAKT2 , HvKCO1 and HvHAK4 to regulation of K+ relations of growing barley leaf cells are discussed.  相似文献   
3.
The role of rhizosphere yeasts as plant nutrient‐scavenging microsymbionts in resource‐limited Mediterranean‐type heathlands is unknown. This study, therefore, focused on quantitative elemental distribution within the roots of a medicinal sclerophyll, Agathosma betulina (Berg.) Pillans, grown under nutrient‐poor conditions, and colonized by Cryptococcus laurentii. Micro‐particle‐induced X‐ray emission (PIXE) was used to assess quantitative elemental distribution within the roots of A. betulina inoculated with viable C. laurentii, as well as within roots of control plants that received autoclaved yeast. To aid in the interpretation of heterogeneous elemental distribution patterns, apoplastic barriers (Casparian bands) in root tissues were located using fluorescence microscopy. In addition, root cross‐sections were examined for endophytic C. laurentii using light and transmission electron microscopy (TEM). The average concentrations of P, Fe and Mn were significantly (P < 0.05) higher in roots of yeast‐inoculated plants, compared to control plants. Casparian bands were observed in the exodermal cells of both treatments, and the presence of these bands was correlated with elemental enrichment in the epi/exodermal‐outer cortical tissues. Light and TEM micrographs revealed that the yeast was not a root endophyte. This is the first report describing the role of a soil yeast as a plant nutrient‐scavenging microsymbiont.  相似文献   
4.
The Opegrapha species with 3-septate ascospores growing on Pertusaria and Ochrolechia are revised. Two species are recognized: Opegrapha anomea (of which O. pertusariae , O. quaternella , O. wetmorei and possibly Leciographa weissii are considered to be synonyms), and O. blakii Ertz & Diederich sp. nov. described from a sterile lichen with an Ochrolechia -like thallus, known from Ecuador and Venezuela. Opegrapha anomea and several related lichenicolous species with roundish or irregular, often multilocular ascomata are morphologically intermediate between Opegrapha and Plectocarpon , and might represent a distinct genus.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144, 235−241.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号