首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  2021年   2篇
  2015年   3篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1989年   2篇
  1988年   1篇
  1984年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
Initiation of DNA replication of the papillomavirus genome is a multi-step process involving the sequential loading of viral E1 protein subunits onto the origin of replication. Here we have captured structural snapshots of two sequential steps in the assembly process. Initially, an E1 dimer binds to adjacent major grooves on one face of the double helix; a second dimer then binds to another face of the helix. Each E1 monomer has two DNA-binding modules: a DNA-binding loop, which binds to one DNA strand and a DNA-binding helix, which binds to the opposite strand. The nature of DNA binding suggests a mechanism for the transition between double- and single-stranded DNA binding that is implicit in the progression to a functional helicase.  相似文献   
2.
This investigation aims to evaluate the antitumor and antioxidant potential of Chrysaora quinquecirrha (sea nettle) nematocyst venom on Ehrlich ascites carcinoma (EAC) tumor model. Tumor was induced in mice by intraperitoneal injection of EAC cells. The antitumor effect of sea nettle nematocyst venom (SNV) peptide was evaluated by assessing in vitro cytotoxicity, survival time, hematological, and antioxidant parameters. Intraperitoneal injection of SNV peptide increased the survival time of the EAC-bearing mice. The SNV peptide brought back the altered levels of the hematological and antioxidant parameters in a dose dependent manner in EAC-bearing mice. The results were comparable to that of the result obtained from the animals treated with the standard drug 5-fluorouracil (20 mg/kg bw). Thus, present study revealed that SNV peptide possessed significant antitumor and antioxidant activity.  相似文献   
3.
Continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopy have been used to characterize two variants of bacterial sulfite dehydrogenase (SDH) from Starkeya novella in which the conserved active-site arginine residue (R55) is replaced by a neutral amino acid residue. Substitution by the hydrophobic methionine residue (SDHR55M) has essentially no effect on the pH dependence of the EPR properties of the Mo(V) center, even though the X-ray structure of this variant shows that the methionine residue is rotated away from the Mo center and a sulfate anion is present in the active-site pocket (Bailey et al. in J Biol Chem 284:2053–2063, 2009). For SDHR55M only the high-pH form is observed, and samples prepared in H2 17O-enriched buffer show essentially the same 17O hyperfine interaction and nuclear quadrupole interaction parameters as SDHWT enzyme. However, the pH dependence of the EPR spectra of SDHR55Q, in which the positively charged arginine is replaced by the neutral hydrophilic glutamine, differs significantly from that of SDHWT. For SDHR55Q the blocked form with bound sulfate is generated at low pH, as verified by 33S couplings observed upon reduction with 33S-labeled sulfite. This observation of bound sulfate for SDHR55Q supports our previous hypothesis that sulfite-oxidizing enzymes can exhibit multiple pathways for electron transfer and product release (Emesh et al. in Biochemistry 48:2156–2163, 2009). At pH ≥ 8 the high-pH form dominates for SDHR55Q.  相似文献   
4.
5.
6.
7.
The Mo(V) forms of the Tyr343Phe (Y343F) mutant of human sulfite oxidase (SO) have been investigated by continuous wave (CW) and variable frequency pulsed EPR spectroscopies as a function of pH. The CW EPR spectrum recorded at low-pH (∼6.9) has g-values similar to those known for the low-pH form of the native vertebrate SO (original lpH form); however, unlike the spectrum of original lpH SO, it does not show any hyperfine splittings from a nearby exchangeable proton. The detailed electron spin echo (ESE) envelope modulation (ESEEM) and pulsed electron-nuclear double resonance (ENDOR) experiments also did not reveal any nearby protons that could belong to an exchangeable ligand at the molybdenum center. These results suggest that under low-pH conditions the active site of Y343F SO is in the “blocked” form, with the Mo(V) center coordinated by sulfate. With increasing pH the EPR signal from the “blocked” form decreases, while a signal similar to that of the original lpH form appears and becomes the dominant signal at pH >9. In addition, both the CW EPR and ESE-detected field-sweep spectra reveal a considerable contribution from a signal similar to that usually detected for the high-pH form of native vertebrate SO (original hpH form). The nearby exchangeable protons in both of the component forms observed at high-pH were studied by the ESEEM spectroscopy. These results indicate that the Y343F mutation increases the apparent pKa of the transition from the lpH to hpH forms by ∼2 pH units.  相似文献   
8.
Sulfite oxidase (SO) is a molybdoheme enzyme that is important in sulfur catabolism, and mutations in the active site region are known to cause SO deficiency disorder in humans. This investigation probes the effects that mutating aromatic residues (Y273, W338, and H337) in the molybdenum-containing domain of human SO have on both the intramolecular electron transfer (IET) rate between the molybdenum and iron centers using laser flash photolysis and on catalytic turnover via steady-state kinetic analysis. The W338 and H337 mutants show large decreases in their IET rate constants (k ET) relative to the wild-type values, suggesting the importance of these residues for rapid IET. In contrast, these mutants are catalytically competent and exhibit higher k cat values than their corresponding k ET, implying that these two processes involve different conformational states of the protein. Redox potential investigations using spectroelectrochemistry revealed that these aromatic residues close to the molybdenum center affect the potential of the presumably distant heme center in the resting state (as shown by the crystal structure of chicken SO), suggesting that the heme may be interacting with these residues during IET and/or catalytic turnover. These combined results suggest that in solution human SO may adopt different conformations for IET and for catalysis in the presence of the substrate. For IET the H337/W338 surface residues may serve as an alternative-docking site for the heme domain. The similarities between the mutant and wild-type EPR spectra indicate that the active site geometry around the Mo(V) center is not changed by the mutations studied here.  相似文献   
9.
The sulfite dehydrogenase from Starkeya novella is the only known sulfite-oxidizing enzyme that forms a permanent heterodimeric complex between a molybdenum and a heme c-containing subunit and can be crystallized in an electron transfer competent conformation. Tyr236 is a highly conserved active site residue in sulfite oxidoreductases and has been shown to interact with a nearby arginine and a molybdenum-oxo ligand that is involved in catalysis. We have created a Tyr236 to Phe substitution in the SorAB sulfite dehydrogenase. The purified SDH(Y236F) protein has been characterized in terms of activity, structure, intramolecular electron transfer, and EPR properties. The substituted protein exhibited reduced turnover rates and substrate affinity as well as an altered reactivity toward molecular oxygen as an electron acceptor. Following reduction by sulfite and unlike SDH(WT), the substituted enzyme was reoxidized quickly in the presence of molecular oxygen, a process reminiscent of the reactions of the sulfite oxidases. SDH(Y236F) also exhibited the pH-dependent CW-EPR signals that are typically observed in vertebrate sulfite oxidases, allowing a direct link of CW-EPR properties to changes caused by a single-amino acid substitution. No quantifiable electron transfer was seen in laser flash photolysis experiments with SDH(Y236F). The crystal structure of SDH(Y236F) clearly shows that as a result of the substitution the hydrogen bonding network surrounding the active site is disturbed, resulting in an increased mobility of the nearby arginine. These disruptions underline the importance of Tyr236 for the integrity of the substrate binding site and the optimal alignment of Arg55, which appears to be necessary for efficient electron transfer.  相似文献   
10.
The oxomolybdenum mono-ene-1,2-dithiolate complex (Tp*)MoO(bdtCl2) (3) has been synthesized and characterized (Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate; bdtCl2 is 3,6-dichloro-1,2-benzenedithiolate). The X-ray structural data show that 3 crystallizes in the monoclinic space group, P21/c, where a=7.963 (3), b=26.272 (11), c=14.016 (6) Å, β=105.352 (7). The (Tp*)MoO(bdtCl2) molecule exhibits a distorted pseudo-octahedral coordination geometry, with the Mo atom ligated by a terminal oxo atom, two sulfur donor atoms of the bdtCl2 ligand and three nitrogen atoms of the tridentate facially coordinated Tp* ligand. The coordination environment about the Mo atom is similar to that of (Tp*)MoO(bdt) (1) (bdt is 1,2-benzenedithiolate), but the fold angle between the MoS2 plane and S2C2 plane of the bdtCl2 ligand (θ=6.9°) is substantially smaller than the feature in 1 (θ=21.3°). The similar IR, EPR, and electronic absorption spectroscopic results for 1 and 3 indicate that the electron withdrawing nature of the chlorine substituents of 3 does not significantly perturb the electronic structure of the Mo(V) center. However, the solution redox potentials and the gas-phase ionization energies are sensitive to remote substituent effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号