首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   19篇
  2022年   1篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   15篇
  2014年   16篇
  2013年   23篇
  2012年   14篇
  2011年   15篇
  2010年   24篇
  2009年   25篇
  2008年   16篇
  2007年   16篇
  2006年   14篇
  2005年   15篇
  2004年   12篇
  2003年   5篇
  2002年   6篇
  2001年   8篇
  2000年   4篇
  1999年   4篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   8篇
  1987年   2篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1983年   5篇
  1982年   17篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有374条查询结果,搜索用时 93 毫秒
1.
A protein kinase activity was copurified with the chick oviduct progesterone receptor. The enzyme is magnesium dependent and can use the B subunit of progesterone receptor or histones as substrates. The physiochemical parameters of the kinase were determined [pI approximately 5.3; Stokes radius approximately 7.2 nm; sedimentation coefficient (S 20,w) approximately 5.6] and compared to those of the purified B subunit. The results were consistent with the presence of an unique enzyme distinct from the receptor itself. The physiological significance of receptor phosphorylation was investigated in oviduct cells grown in primary culture. Cells were labeled with [32P]orthophosphate in presence or absence of progesterone and the receptor components were immunoprecipitated with a specific polyclonal antibody. Although progesterone treatment lead to the attachment of most of the receptor (approximately 80%) to nuclear structures, the 32P-labeled B subunit was only recovered in the cytosol fraction. Different procedures to extract the nuclear receptor did not allow detection of any 32P-labeled form in the nuclear-soluble fractions, suggesting that the B subunit was not further phosphorylated upon the exposure of cells to progesterone.  相似文献   
2.
In the absence of hormonal ligand, inactive, heterooligomeric, 8-10S steroid receptor complexes include a p59 protein (apparent M(r) approximately 59 kDa) bound to th heat shock protein hsp90 (apparent M(r) approximately 90 kDa), which itself binds to the ligand binding domain LBD of the receptor molecule, p59 is thus an hsp binding immunophilin HBI, which, through its interaction with a chaperone, may intervene in several cellular functions. We report that, in cell-free experiments at 0 degrees C, FK506 and rapamycin do not release p59 nor hsp90 from the 9.5S rabbit uterus progesterone receptor, suggesting that the binding of p59 to hsp90 does not interfere with the rotamase site of HBI. There is no "transformation/activation" of the receptor, but an up to 2 fold increase in progesterone agonist and antagonist binding to the receptor is observed. It is suggested that a functional interaction between HBI and receptor activity may be mediated by hsp90.  相似文献   
3.
The nontransformed forms of the chick oviduct cytosol progesterone receptor of sedimentation coefficient approximately 8 S (8S-PR) are heterooligomers including one hormone binding molecule, either B, approximately 110,000, or A, approximately 79,000, and two non-hormone binding subunits recently identified as heat-shock protein Mr approximately 90,000 (hsp 90) [Renoir, J. M., Buchou, T., Mester, J., Radanyi, C., & Baulieu, E. E. (1984) Biochemistry 23, 6016-6023]. In the crude cytosol, bisimidates reacted under mild conditions and gave rise to complexes, binding progesterone and reacting with BF4, an anti-hsp 90 monoclonal antibody. These complexes have a sedimentation coefficient of 8.4 S and Rs of 8.1 nm in the presence of 0.4 M KCl and in the absence of molybdate ions, i.e., in conditions that would transform non-cross-linked 8S-PR to Rs approximately 5 nm forms of approximately 4-S sedimentation coefficient. All bisimidates tested, of an effective reagent length between 0.73 and 1.09 nm, gave comparable results in the cytosol prepared with or without molybdate ions, confirming that the latter were not responsible for the formation of the cross-linked 8S complexes. It was found that the dimethyl pimelimidate cross-linked 8S-PR was more resistant to inactivating conditions, urea, or heat treatment than the non-cross-linked 8S-PR. The 8S-PR cross-linked in the cytosol was purified by affinity chromatography in the absence of molybdate ions. After purification, it also reacted with the monoclonal antibody BF4 and had the same Rs (8.0 nm), sedimentation coefficient (approximately 8.5 S), and thus Mr (approximately 290,000) as the original cytosol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
4.
A magnesium-dependent protein kinase activity was copurified with both the molybdate-stabilized 8S form of the chick oviduct progesterone receptor (PR) and its B subunit. In each case, purification was performed by hormonal affinity chromatography followed by ion-exchange chromatography. The Km(app) values of the phosphorylation reaction for [gamma-32P]ATP and calf thymus histones were approximately 1.3 X 10(-5) M and approximately 1.6 X 10(-5) M, respectively, and only phosphorylated serine residues were found in protein substrates, including PR B subunit. Physicochemical parameters of the enzyme [pI approximately 5.3, Stokes radius approximately 7.2 nm, sedimentation coefficient (S20,w) approximately 5.6 S, and Mr approximately 200,000] were compared to those of purified forms of PR (B subunit, pI approximately 5.3, Stokes radius approximately 6.1 nm, and Mr approximately 110,000; 8S form, Stokes radius approximately 7.7 nm and Mr approximately 240,000). The results suggest that most of the protein kinase activity copurified with both oligomeric and monomeric forms of PR belongs to an enzyme distinct from currently known receptor components. Its physiological significance remains unknown.  相似文献   
5.
Non-transformed steroid receptors have an approximately 8S sedimentation coefficient that corresponds to an oligomeric structure of 250-300 kd which includes a non-hormone binding 90-kd protein. A monoclonal antibody BF4 raised against the purified, molybdate-stabilized, 8S progesterone receptor (8S-PR) from chick oviduct, recognizes 8S forms of all steroid hormone receptors. BF4 was found specific for a 90-kd protein present in great abundance in all chicken tissues, including that present in 8S-forms of steroid receptors. Here, using immunological and biochemical techniques, we demonstrate that this ubiquitous BF4-positive 90-kd protein is in fact the chicken 90 kd heat-shock protein (hsp 90): it increased in heat-shocked chick embryo fibroblasts, and displayed identical migration in two-dimensional gel electrophoresis and the same V8 peptide map as the already described hsp 90. We discuss the possibility that the interaction between hsp 90 and steroid hormone-binding subunits may play a role in keeping the receptor in an inactive form.  相似文献   
6.
7.
Preparations of the 90K and 110K components of the chick oviduct progesterone receptor (PR) purified to near homogeneity were tested for protein kinase activity. The 90K component was shown to incorporate radioactive phosphate from [γ-32P]-ATP in the presence of Ca2+ but not of Mg2+ ions, while the 110K component was phosphorylated in the presence of Mg2+, but not of Ca2+. The enzymatic activity of the 90K polypeptide appeared selective, since added proteins (histones) did not become phosphorylated. However, all proteins present in the 110K preparations were phosphorylated in the presence of Mg2+. These data suggest that components of the chick oviduct PR display protein kinase activity.  相似文献   
8.
9.
10.
FKBP59-HBI, a heat shock protein hsp90-binding immunophilin that was originally detected in heterooligomer forms of steroid receptors, is retained on Calmodulin (CAM)-Sepharose 4B in the presence of 2 mM Ca2+ and is eluted by EGTA, demonstrating a specific p59-CAM interaction. The p59 amino acid sequence reveals the presence of two putative CAM binding sites in a helix regions of the protein, as well as PEST sequences which are generally present in CAM-binding proteins. In vitro proteolysis by calpain II (a Ca(2+)-activated neutral protease), another feature of CAM-binding proteins, generates shorter peptides revealed by the mAb EC1, but not by the pAb 173 which recognizes the C-terminal of the protein. The potential function of CAM binding by the hsp90-binding immunophilin is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号