首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   31篇
  2021年   11篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   9篇
  2012年   15篇
  2011年   20篇
  2010年   3篇
  2009年   10篇
  2008年   14篇
  2007年   12篇
  2006年   15篇
  2005年   14篇
  2004年   8篇
  2003年   13篇
  2002年   10篇
  2001年   7篇
  2000年   7篇
  1999年   8篇
  1998年   12篇
  1997年   6篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   7篇
  1987年   2篇
  1985年   3篇
  1983年   3篇
  1982年   2篇
  1977年   3篇
  1976年   4篇
  1974年   2篇
  1972年   4篇
  1969年   3篇
  1967年   2篇
  1955年   2篇
  1951年   1篇
  1949年   1篇
  1934年   2篇
  1913年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有299条查询结果,搜索用时 15 毫秒
1.
An isocratic reversed-phase high-performance liquid chromatographic method for the determination of human growth hormone (HGH) purity is described. This method offers superior resolution of HGH-related substances (e.g., sulfoxide and desamido derivatives) from unmodified HGH when compared to a number of alternative chromatographic and electrophoretic techniques.  相似文献   
2.
Forced expression of the myogenic regulatory gene MyoD in many types of cultured cells initiates their conversion into skeletal muscle. It is not known, however, if MyoD expression serves to activate all or part of the skeletal muscle program in vivo during animal development, nor is it known how limiting the influences of cellular environment may be on the regulatory effects of MyoD. To begin to address these issues, we have produced transgenic mice which express MyoD in developing heart, where neither MyoD nor its three close relatives--myogenin, Myf-5, and MRF4/herculin/Myf-6--are normally expressed. The resulting gross phenotype in offspring from multiple, independent transgenic founders includes abnormal heart morphology and ultimately leads to death. At the molecular level, affected hearts exhibit activation of skeletal muscle-specific regulatory as well as structural genes. We conclude that MyoD is able to initiate the program that leads to skeletal muscle differentiation during mouse development, even in the presence of the ongoing cardiac differentiation program. Thus, targeted misexpression of this tissue-specific regulator during mammalian embryogenesis can activate, either directly or indirectly, a diverse set of genes normally restricted to a different cell lineage and a different cellular environment.  相似文献   
3.
In vertebrate development, a prominent feature of several cell lineages is the coupling of cell cycle regulation with terminal differentiation. We have investigated the basis of this relationship in the skeletal muscle lineage by studying the effects of the proliferation-associated regulator, c-myc, on the differentiation of MyoD-initiated myoblasts. Transient cotransfection assays in NIH 3T3 cells using MyoD and c-myc expression vectors demonstrated c-myc suppression of MyoD-initiated differentiation. A stable cell system was also developed in which MyoD expression was constitutive, while myc levels could be elevated conditionally. Induction of this conditional c-myc suppressed myogenesis effectively, even in the presence of MyoD. c-myc suppression also prevented up-regulation of a relative of MyoD, myogenin, which is normally expressed at the onset of differentiation in all muscle cell lines examined and may be essential for differentiation. Additional experiments tested whether failure to differentiate in the presence of myc could be overcome by providing myogenin ectopically. Cotransfection of c-myc with myogenin, MyoD, or a mixture of myogenin and MyoD showed that neither myogenin alone nor myogenin plus MyoD together could bypass the c-myc block. The effects of c-myc were further dissected by showing that c-myc can inhibit differentiation independently of Id, a negative regulator of muscle differentiation. These results lead us to propose that c-myc and Id constitute independent negative regulators of muscle differentiation, while myogenin and any of the other three related myogenic factors (MyoD, Myf-5, and MRF4/herculin/Myf-6) act as positive regulators.  相似文献   
4.
5.
Bacteriophage T4 codes for a DNA-[N6-adenine] methyltransferase (Dam) which recognizes primarily the sequence GATC in both cytosine- and hydroxymethylcytosine-containing DNA. Hypermethylating mutants, damh, exhibit a relaxation in sequence specificity, that is, they are readily able to methylate non-canonical sites. We have determined that the damh mutation produces a single amino acid change (Pro126 to Ser126) in a region of homology (III) shared by three DNA-adenine methyltransferases; viz, T4 Dam, Escherichia coli Dam, and the DpnII modification enzyme of Streptococcus pneumoniae. We also describe another mutant, damc, which methylates GATC in cytosine-containing DNA, but not in hydroxymethylcytosine-containing DNA. This mutation also alters a single amino acid (Phe127 to Val127). These results implicate homology region III as a domain involved in DNA sequence recognition. The effect of several different amino acids at residue 126 was examined by creating a polypeptide chain terminating codon at that position and comparing the methylation capability of partially purified enzymes produced in the presence of various suppressors. No enzyme activity is detected when phenylalanine, glutamic acid, or histidine is inserted at position 126. However, insertion of alanine, cysteine, or glycine at residue 126 produces enzymatic activity similar to Damh.  相似文献   
6.
Natural selection, in the form of balancing selection or selective sweeps, can result in a decoupling of the amounts of molecular polymorphism and divergence. Thus natural selection can cause some areas of DNA sequence to have greater silent polymorphism, relative to divergence between species, than other areas. It would be useful to have a statistical test for heterogeneity in the polymorphism to divergence ratio across a region of DNA sequence, one that could identify heterogeneity greater than that expected from the neutral processes of mutation, drift, and recombination. The only currently available test requires that a region be arbitrarily divided into sections that are compared with each other, and the subjectivity of this division could be problematic. Here a test is proposed in which runs of polymorphic and fixed sites are counted, where a "run" is a set of one or more sites of one type preceded and followed by the other type. The number of runs is smaller than otherwise expected if polymorphisms are clumped together. By simulating neutral evolution and comparing the observed number of runs to the simulations, a statistical test is possible which does not require any a priori decisions about subdivision.   相似文献   
7.
Two laboratories tested four different brands of alkaline 2% glutaraldehyde sterilants by the Association of Official Analytical Chemists sporicidal test. Each laboratory found survival of Clostridium sporogenes spores on spore-labeled unglazed porcelain penicylinders (cylinders) to vary from test to test, and survival did not always correlate with increasing sterilant exposure time. These results were consistent with a theory that there may be random conditions within the test that prevent the sterilant from contacting all spores. Further studies indicated that the prior history of the unglazed porcelain cylinders and whether the C. sporogenes culture grown in egg-meat media had been processed (homogenized) to eliminate visible pieces of egg-meat media were important factors affecting the results and repeatability of this test.  相似文献   
8.
9.
10.
Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function. Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality and an overrepresentation of certain triangular motifs. Additional evidence suggests a significant distance dependency to connectivity over a local scale of a few hundred microns, and particular patterns of synaptic turnover dynamics, including a heavy-tailed distribution of synaptic efficacies, a power law distribution of synaptic lifetimes, and a tendency for stronger synapses to be more stable over time. Understanding how many of these non-random features simultaneously arise would provide valuable insights into the development and function of the cortex. While previous work has modeled some of the individual features of local cortical wiring, there is no model that begins to comprehensively account for all of them. We present a spiking network model of a rodent Layer 5 cortical slice which, via the interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms, qualitatively reproduces these non-random effects when combined with simple topological constraints. Our model suggests that mechanisms of self-organization arising from a small number of plasticity rules provide a parsimonious explanation for numerous experimentally observed non-random features of recurrent cortical wiring. Interestingly, similar mechanisms have been shown to endow recurrent networks with powerful learning abilities, suggesting that these mechanism are central to understanding both structure and function of cortical synaptic wiring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号