首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   69篇
  282篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   14篇
  2011年   10篇
  2010年   6篇
  2009年   10篇
  2008年   10篇
  2007年   5篇
  2006年   10篇
  2005年   13篇
  2004年   7篇
  2003年   7篇
  2002年   12篇
  2001年   8篇
  2000年   13篇
  1999年   6篇
  1998年   13篇
  1997年   9篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   5篇
  1992年   8篇
  1991年   7篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   6篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
1.
2.
The human DNA-excision repair gene ERCC-1 is cloned by its ability to correct the excision-repair defect of the ultraviolet light- and mitomycin-C-sensitive CHO mutant cell line 43-3B. This mutant is assigned to complementation group 2 of the excision-repair-deficient CHO mutants. In order to establish whether the correction by ERCC-1 is confined to CHO mutants of one complementation group, the cloned repair gene, present on cosmid 43-34, was transfected to representative cell lines of the 6 complementation groups that have been identified to date. Following transfection, mycophenolic acid was used to select for transferants expressing the dominant marker gene Ecogpt, also present on cosmid 43-34. Cotransfer of the ERCC-1 gene was shown by Southern blot analysis of DNA from pooled (500-2000 independent colonies) transformants of each mutant. UV survival and UV-induced UDS showed that only mutants belonging to complementation group 2 and no mutants of other groups were corrected by the ERCC-1 gene. This demonstrates that ERCC-1 does not provide an aspecific bypass of excision-repair defects in CHO mutants and supports the assumption that the complementation analysis is based on mutations in different repair genes.  相似文献   
3.
4.
The chromosomal localizations of two closely related human DNA repair genes, HHR6A and HHR6B, were determined by in situ hybridization with biotinylated probes. HHR6A and HHR6B (human homolog of yeast RAD6) encode ubiquitin-conjugating enzymes (E2 enzymes), likely to be involved in postreplication repair and induced mutagenesis. The HHR6B gene was assigned to human chromosome 5q23-q31, whereas the HHR6A gene was localized on the human X chromosome (Xq24-q25). This latter assignment was confirmed with an X-specific human-mouse/hamster somatic cell hybrid panel. Southern blot analysis points to an X and an autosomal localization of HHR6A and HHR6B, respectively, in the mouse. The potential involvement of these genes in human genetic disorders is discussed.  相似文献   
5.
We have cloned the human DNA excision repair gene ERCC6 by virtue of its ability to correct the uv sensitivity of Chinese hamster overy cell mutant UV61. This mutant is a member of complementation group 6 of the nucleotide excision repair-deficient rodent mutants. By means of in situ hybridization and Southern blot analysis of mouse x human somatic cell hybrids, the gene was localized to human chromosome 10q11-q21. An RFLP detected within the ERCC6 locus can be helpful in linkage analysis.  相似文献   
6.
Crude extracts from human cells were microinjected into the cytoplasm of cultured fibroblasts from 9 excision-deficient xeroderma pigmentosum (XP) complementation groups. The level of UV-induced unscheduled DNA synthesis (UDS) was measured to determine the effect of the extract on the repair capacity of the injected cells. With a sensitive UDS assay procedure a (transient) increase in UV-induced UDS level was found in fibroblasts from all complementation groups after injection of extracts from repair-proficient (HeLa) or complementing XP cells (except in the case of XP-G), but not after introduction of extracts from cells belonging to the same complementation group. This indicates that the phenotypic correction is exerted by complementation-group-specific factors in the extract, a conclusion that is in agreement with the observation that different levels of correction are found for different complementation groups. The XP-G-correcting factor was shown to be sensitive to proteolytic degradation, suggesting that it is a protein like the XP-A factor.  相似文献   
7.
Cultured fibroblasts of patients with the DNA repair syndrome xeroderma pigmentosum (XP) were injected with crude cell extracts from various human cells. Injected fibroblasts were then assayed for unscheduled DNA synthesis (UDS) to see whether the injected extract could complement their deficiency in the removal of u.v.-induced thymidine dimers from their DNA. Microinjection of extracts from repair-proficient cells (such as HeLa, placenta) and from cells belonging to XP complementation group C resulted in a temporary correction of the DNA repair defect in XP-A cells but not in cells from complementation groups C, D or F. Extracts prepared from XP-A cells were unable to correct the XP-A repair defect. The UDS of phenotypically corrected XP-A cells is u.v.-specific and can reach the level of normal cells. The XP-A correcting factor was found to be sensitive to the action of proteinase K, suggesting that it is a protein. It is present in normal cells in high amounts, it is stable on storage and can still be detected in the injected cells 8 h after injection. The microinjection assay described in this paper provides a useful tool for the purification of the XP-A (and possibly other) factor(s) involved in DNA repair.  相似文献   
8.
Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are quite distinct genetic disorders that are associated with defects in excision repair of UV-induced DNA damage. A few patients have been described previously with the clinical features of both disorders. In this paper we describe an individual in this category who has unusual cellular responses to UV light. We show that his cultured fibroblasts and lymphocytes are extremely sensitive to irradiation with UV-C, despite a level of nucleotide excision repair that is 30%–40% that of normal cells. The deficiency is assigned to the XP-D complementation group, and we have identified two causative mutations in the XPD gene: a gly→arg change at amino acid 675 in the allele inherited from the patient's mother and a −1 frameshift at amino acid 669 in the allele inherited from his father. These mutations are in the C-terminal 20% of the 760-amino-acid XPD protein, in a region where we have recently identified several mutations in patients with trichothiodystrophy.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号