首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   32篇
  2021年   1篇
  2018年   2篇
  2017年   3篇
  2015年   7篇
  2014年   1篇
  2013年   6篇
  2012年   10篇
  2011年   4篇
  2010年   6篇
  2009年   10篇
  2008年   8篇
  2007年   11篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   9篇
  2002年   10篇
  2001年   12篇
  2000年   9篇
  1999年   13篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   9篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   4篇
  1973年   1篇
  1972年   1篇
  1958年   1篇
  1938年   1篇
  1934年   1篇
  1924年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
1.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
2.
The dissociation of the purified human placental alpha 2 beta 2 heterotetrameric insulin receptor complex into an alpha beta heterodimeric state was found to occur in a pH- and dithiothreitol (DTT)-dependent manner. Formation of the alpha beta heterodimeric complex, under conditions which preserved tracer insulin binding and protein kinase activities (pH 8.75 for 25 min followed by 2.0 mM DTT for 5 min) occurred with an approximate 50% efficiency. The resulting nondissociated alpha 2 beta 2 heterotetrameric complexes could then be separated effectively by Bio-Gel A-1.5m gel filtration chromatography at neutral pH. The isolated DTT-treated but nondissociated alpha 2 beta 2 heterotetrameric complex was resistant to any further dissociation by a second round of DTT and alkaline pH treatment, whereas the isolated alpha beta heterodimeric complex was stable to spontaneous reassociation for at least 72 h at pH 7.60. Kinetic analyses of the insulin receptor protein kinase activity demonstrated that the insulin stimulation of glutamic acid:tyrosine (4:1) synthetic polymer phosphorylation for both the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric complexes occurred via an increase in Vmax without any significant change in Km. Examination of beta subunit autophosphorylation of the alpha beta heterodimeric complex, in the presence but not in the absence of insulin, demonstrated the appearance of the covalent 32P-labeled alpha 2 beta 2 heterotetrameric complex. Further, the initial rate of insulin-stimulated beta subunit autophosphorylation in the isolated alpha beta heterodimeric complex occurred in a dilution-dependent (intermolecular) manner. These data demonstrate that the isolated alpha beta heterodimeric insulin receptor complex is fully capable of expressing insulin-dependent activation of the beta subunit protein kinase domain with the covalent reassociation of the alpha beta heterodimeric complex into an alpha 2 beta 2 heterotetrameric disulfide-linked state.  相似文献   
3.
Examination of 125I-IGF-1 affinity cross-linking and beta-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated alpha beta heterodimeric IGF-1 receptors into an alpha 2 beta 2 heterotetrameric state, in a similar manner to that observed for the insulin receptor [Morrison, B.D., Swanson, M.L., Sweet, L.J., & Pessin, J.E. (1988) J. Biol. Chem. 263, 7806-7813]. The formation of the alpha 2 beta 2 heterotetrameric IGF-1 receptor complex from the partially purified alpha beta heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified alpha beta heterodimers into an alpha 2 beta 2 heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulate the protein kinase activity of the purified alpha beta heterodimeric insulin receptor complex. Incubation of the alpha 2 beta 2 heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter 125I-IGF-1 binding of IGF-1 stimulation of protein kinase activity. In addition, IAN did not affect the Mn/MgATP-dependent noncovalent association of IGF-1 receptor alpha beta heterodimers into an alpha 2 beta 2 heterotetrameric state. However, IAN treatment of the alpha beta heterodimeric IGF-1 receptors inhibited the IGF-1-dependent covalent formation of the disulfide-linked alpha 2 beta 2 heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated alpha beta heterodimeric IGF-1 receptor complexes into a disulfide-linked alpha 2 beta 2 heterotetrameric state whereas Mn/MgATP induces a noncovalent association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
4.
Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment to pH 7.6, resulted in the formation of a functional alpha beta heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native alpha 2 beta 2 heterotetrameric disulfide-linked state. The membrane-bound alpha beta heterodimeric complex displayed similar curvilinear 125I-IGF-1 equilibrium binding compared to the alpha 2 beta 2 heterotetrameric complex. Triton X-100 solubilization of the alkaline pH and DTT-pretreated placenta membranes, followed by Bio-Gel A-1.5m gel filtration chromatography, was found to effectively separate the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric IGF-1 receptor species, 125I-IGF-1 binding to both the isolated alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. Similar to the membrane-bound IGF-1 receptor species, the 125I-IGF-1 binding properties between the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric complexes were not significantly different. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of alpha beta heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent alpha 2 beta 2 heterotetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
L J Sweet  P A Wilden  J E Pessin 《Biochemistry》1986,25(22):7068-7074
The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing (0.1% SDS) or nondenaturing (0.1% Triton X-100) conditions. Pretreatment of 32P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the alpha 2 beta 2 insulin receptor complex (Mr 400,000) into the monomeric 95,000 beta subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the alpha 2 beta 2 heterotetrameric complex with essentially no alpha beta heterodimeric or free monomeric beta subunit species present. This suggests that the insulin receptor can reoxidize into the Mr 400,000 complex after the removal of DTT by gel filtration chromatography. Surprisingly, these apparently reoxidized insulin receptors were also observed to be functional with respect to insulin binding, albeit with a 50% decrease in affinity for insulin and insulin stimulation of the beta subunit autophosphorylation. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT followed by incubation with excess N-ethylmaleimide prior to gel filtration chromatography in 0.1% Triton X-100. Under these conditions the insulin receptors migrated as the Mr 400,000 alpha 2 beta 2 complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
Purified human placental insulin receptors were incorporated into small unilamellar phospholipid vesicles by the addition of n-octyl beta-glucopyranoside solubilized phospholipids, followed by removal of the detergent on a Sephadex G-50 gel filtration column and extensive dialysis. The vesicles have an average diameter of 142 +/- 24 nm by Sephacryl S-1000 gel filtration chromatography and 119 +/- 20 nm by transmission electron microscopy. These vesicles are impermeant to small molecules as indicated by their ability to retain [gamma-32P]ATP, which could be released by the addition of 0.05% Triton X-100. Detergent permeabilization or freeze-thawing of the insulin receptor containing vesicles in the presence of 125I-insulin indicated that approximately 75% of the insulin binding sites were oriented right side out (extravesicularly). Sucrose gradient centrifugation of insulin receptors incorporated at various protein to phospholipid mole ratios demonstrated that the insulin receptors were inserted into the phospholipid bilayer structure in a concentration-dependent manner. Addition of [gamma-32P]ATP to the insulin receptor containing vesicles was relatively ineffective in promoting the autophosphorylation of the beta subunit in the absence or presence of insulin. Permeabilization of the vesicles with low detergent concentrations, however, stimulated the beta-subunit autophosphorylation approximately 2-fold in the absence and 10-fold in the presence of insulin. Insulin-stimulated beta-subunit autophosphorylation was also observed under conditions such that 94% of those vesicles containing insulin receptors had a single receptor per vesicle, suggesting that the initial beta-subunit autophosphorylating activity is intramolecular. Phospho amino acid analysis of the vesicle-incorporated insulin receptors demonstrated that the basal and insulin-stimulated beta-subunit autophosphorylation occurs exclusively on tyrosine residues. It is concluded that when purified insulin receptors are incorporated into a phospholipid bilayer, they insert into the vesicles primarily in the same orientation as occurs in the plasma membrane of intact cells and retain insulin binding as well as insulin-stimulated beta-subunit autophosphorylating activities.  相似文献   
7.
Assembly of insulin/insulin-like growth factor-1 hybrid receptors in vitro   总被引:8,自引:0,他引:8  
Insulin and Mn/MgATP treatment of immunoaffinity-purified alpha beta heterodimeric insulin receptors induced the formation of an alpha 2 beta 2 heterotetrameric insulin receptor complex. In contrast, insulin-like growth factor-1 (IGF-1) treatment was completely ineffective in inducing the association of alpha beta heterodimeric insulin receptors. Similarly, IGF-1 or Mn/MgATP, but not insulin, treatment of immunoaffinity-purified alpha beta heterodimeric IGF-1 receptors induced the formation of an alpha 2 beta 2 heterotetrameric IGF-1 receptor complex. A monoclonal antibody specific for the insulin receptor (MA5) completely immunoprecipitated all the insulin binding activity from both the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric insulin receptor complexes but did not immunoprecipitate IGF-1 receptors. Conversely, the IGF-1 receptor-specific monoclonal antibody (alpha IR-3) immunoprecipitated all the IGF-1 binding activity, but not insulin receptors. The simultaneous treatment of pooled equal amounts of alpha beta heterodimeric insulin and IGF-1 receptors with a combination of insulin and IGF-1 resulted in the formation of alpha 2 beta 2 heterotetrameric insulin and IGF-1 receptor complexes. However, in the mixed alpha 2 beta 2 heterotetrameric receptor fraction MA5 immunoprecipitated 94% of the insulin binding in addition to 27% of the IGF-1 binding activity whereas alpha IR-3 immunoprecipitated 97% of the IGF-1 binding in addition to 38% of the insulin binding activity. Treatment of the mixed alpha beta heterodimeric insulin and IGF-1 receptors with Mn/MgATP also resulted in the formation of cross-immunoreactive (42-46%) alpha 2 beta 2 heterotetrameric receptors. These data directly demonstrate the formation of insulin/IGF-1 hybrid receptors by both a combination of insulin plus IGF-1 or Mn/MgATP treatment of purified human placenta alpha beta heterodimeric insulin and IGF-1 half-receptors in vitro.  相似文献   
8.
The Ras guanylnucleotide exchange protein SOS undergoes feedback phosphorylation and dissociation from Grb2 following insulin receptor kinase activation of Ras. To determine the serine/threonine kinase(s) responsible for SOS phosphorylation in vivo, we assessed the role of mitogen-activated, extracellular-signal-regulated protein kinase kinase (MEK), extracellular-signal-regulated protein kinase (ERK), and the c-JUN protein kinase (JNK) in this phosphorylation event. Expression of a dominant-interfering MEK mutant, in which lysine 97 was replaced with arginine (MEK/K97R), resulted in an inhibition of insulin-stimulated SOS and ERK phosphorylation, whereas expression of a constitutively active MEK mutant, in which serines 218 and 222 were replaced with glutamic acid (MEK/EE), induced basal phosphorylation of both SOS and ERK. Although expression of the mitogen-activated protein kinase-specific phosphatase (MKP-1) completely inhibited the insulin stimulation of ERK activity both in vitro and in vivo, SOS phosphorylation and the dissociation of the Grb2-SOS complex were unaffected. In addition, insulin did not activate the related protein kinase JNK, demonstrating the specificity of insulin for the ERK pathway. The insulin-stimulated and MKP-1-insensitive SOS-phosphorylating activity was reconstituted in whole-cell extracts and did not bind to a MonoQ anion-exchange column. In contrast, ERK1/2 protein was retained by the MonoQ column, eluted with approximately 200 mM NaCl, and was MKP-1 sensitive. Although MEK also does not bind to MonoQ, immunodepletion analysis demonstrated that MEK is not the insulin-stimulated SOS-phosphorylating activity. Together, these data demonstrate that at least one of the kinases responsible for SOS phosphorylation and functional dissociation of the Grb2-SOS complex is an ERK-independent but MEK-dependent insulin-stimulated protein kinase.  相似文献   
9.
10.
In Chironomus tentans salivary gland cells, the cytoplasm can be dissected into concentric zones situated at increasing distances from the nuclear envelope. After RNA labeling, the newly made ribosomal subunits are found in the cytoplasm mainly in the neighborhood of the nucleus with a gradient of increasing abundance towards the periphery of the cell. The gradient for the small subunit lasts for a few hours and disappears entirely after treatment with puromycin. The large subunit also forms a gradient but one which is only partially abolished by puromycin. The residual gradient which which is resistant to the addition of the drug is probably due to the binding of some large ribosomal units to the membranes of the endoplasmic reticulum (J.-E. Edstrom and u. Lonn. 1976. J. Cell Biol. 70:562-572, and U. Lonn and J.-E. Edstrom. 1976. J. Cell. Biol. 70:573-580). If growth is inhibited by starvation, only the puromycin-sensitive type gradient is observed for the large subunit, suggesting that the attachment of these newly made subunits to the endoplasmic reticulum membranes will not occur. If, on the other hand, the drug-resistant gradient is allowed to form in feeding animals, it is conserved during a subsequent starvation for longer periods than in control feeding animals. This observation provides a further support for an effect of starvation on the normal turnover of the large subunits associated with the endoplasmic reticulum. These results also indicate a considerable structural stability in the cytoplasm of these cells worth little or no gross redistribution of cytoplasmic structures over a period of at least 6 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号