首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   30篇
  2018年   3篇
  2017年   3篇
  2015年   10篇
  2014年   3篇
  2013年   3篇
  2012年   10篇
  2011年   3篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1972年   3篇
  1971年   1篇
排序方式: 共有146条查询结果,搜索用时 31 毫秒
1.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
2.
Acid -l-fucosidase (EC 3.2.1.51) was obtained from human liver and purified to homogeneity. The enzyme consists of four subunits; each of these has a molecular mass of 50 kDa and bears oneN-linked carbohydrate chain. The structures of these chains were studied at the glycopeptide level by methylation analysis and 500-MHz1H-NMR spectroscopy. Oligomannoside-type chains andN-acetyllactosamine-type chains are present in an approximate ratio of 31. While the oligomannoside-type chains show some heterogeneity in size (Man5–8GlcNAc2), theN-acetyllactosaminetype chains are exclusively bi-(2–6)-sialyl, bi-antennary in their structure.These observations on the carbohydrate moieties of -l-fucosidase substantiate our hypothesis [Overdijket al. (1986) Glycoconjugate J 3:339–50] with respect to the relationship between the oligosaccharide structure of lysosomal enzymes and their residual intracellular activity in I-cell disease. For the series of enzymes examined so far, namely, -N-acetylhexosaminidase, -l-fucosidase and -galactosidase, the relative amount ofN-acetyllactosamine-type carbohydrate increases, while the residual intracellular activity in I-cell disease tissue decreases in this order. The system which is responsible for preferentially retaining hydrolases with (non-phosphorylated) oligomannoside-type chains both in I-cells and in normal cells has yet to be identified.  相似文献   
3.
Previous biochemical and electrophysiological evidence suggests that in invertebrate photoreceptors, a GTP-binding protein (G-protein) mediates the actions of photoactivated rhodopsin in the initial stages of transduction. We find that squid photoreceptors contain more than one protein (molecular masses 38, 42 and 46 kDa) whose ADP-ribosylation by bacterial exotoxins is light-sensitive. Several lines of evidence suggest that these proteins represent distinct alpha subunits of G-proteins. (1) Pertussis toxin and cholera toxin react with distinct subsets of these polypeptides. (2) Only the 42 kDa protein immunoreacts with the monoclonal antibody 4A, raised against the alpha subunit of the G-protein of vertebrate rods [Hamm & Bownds (1984) J. Gen. Physiol. 84. 265-280]. (3) In terms of ADP-ribosylation, the 42 kDa protein is the least labile to freezing. (4) Of the 38 kDa and 42 kDa proteins, the former is preferentially extracted with hypo-osmotic solutions, as demonstrated by the solubility of its ADP-ribosylated state and by the solubility of the light-dependent binding of guanosine 5'-[gamma-thio]triphosphate. The specific target enzymes for the observed G-proteins have not been established.  相似文献   
4.
Changes in intracellular Ca2+ concentration ([Ca2+]i) in the soma and dendrites of hippocampal CA1 pyramidal neurons were measured using intracellularly injected fura-2. A large component of the [Ca2+]i elevation caused by high frequency stimulation of the Schaffer collaterals was correlated with the Na+ spikes triggered by the excitatory postsynaptic potentials (EPSPs). These spikes were generated in the soma and proximal dendrites and stimulated Ca2+ entry through voltage-gated Ca2+ channels. Suppressing spikes by hyperpolarizing the soma or by injecting QX-314 revealed a smaller nonspike component of Ca2+ entry. A substantial fraction of this component was mediated by the action of the EPSPs on voltage-gated Ca2+ channels, because it persisted in 2-amino-5-phosphonovaleric acid and because it was usually reduced when Ca2+ channel activity was suppressed by hyperpolarization. Ca2+ entry through the N-methyl-D-aspartate receptor channel could not be detected with certainty, perhaps because it was highly localized.  相似文献   
5.
Ion channels activated by light in Limulus ventral photoreceptors   总被引:6,自引:5,他引:1  
The light-activated conductance of Limulus ventral photoreceptors was studied using the patch-clamp technique. Channels (40 pS) were observed whose probability of opening was greatly increased by light. In some cells the latency of channel activation was nearly the same as that of the macroscopic response, while in other cells the channel latency was much greater. Like the macroscopic conductance, channel activity was reduced by light adaptation but enhanced by the intracellular injection of the calcium chelator EGTA. The latter observation indicates that channel activation was not a secondary result of the light-induced rise in intracellular calcium. A two-microelectrode voltage-clamp method was used to measure the voltage dependence of the light-activated macroscopic conductance. It was found that this conductance is constant over a wide voltage range more negative than zero, but it increases markedly at positive voltages. The single channel currents measured over this same voltage range show that the single channel conductance is independent of voltage, but that channel gating properties are dependent on voltage. Both the mean channel open time and the opening rate increase at positive voltages. These properties change in a manner consistent with the voltage dependence of the macroscopic conductance. The broad range of similarities between the macroscopic and single channel currents supports the conclusion that the 40-pS channel that we have observed is the principal channel underlying the response to light in these photoreceptors.  相似文献   
6.
The origin of spontaneous quantum bumps has been examined in the ultraviolet photoreceptors of Limulus median eye. These cells have a rhodopsin with a lambda max at 360 nm and a stable photoproduct, metarhodopsin, with a lambda max at 470 nm. The steady state rate of spontaneous quantum bumps was found to be higher when the metarhodopsin concentration was high than when the rhodopsin concentration was high. This result implicates metarhodopsin in the generation of spontaneous quantum bumps. Furthermore, this result is consistent with the idea that the reaction which inactivates metarhodopsin (terminates the ability of metarhodopsin to initiate the reactions leading to a quantum bump) is reversible and that such reversions can be a significant source of spontaneous quantum bumps. Given that the rate of spontaneous quantum bumps is approximately 1/s under conditions where the number of inactive metarhodopsin molecules is approximately 10(9), it follows that the molecular switch that inactivates metarhodopsin reverses with a probability of less than 10(-9). A model is presented of how a molecular switch with this reliability might be constructed.  相似文献   
7.
In Chironomus tentans salivary gland cells, the cytoplasm can be dissected into concentric zones situated at increasing distances from the nuclear envelope. After RNA labeling, the newly made ribosomal subunits are found in the cytoplasm mainly in the neighborhood of the nucleus with a gradient of increasing abundance towards the periphery of the cell. The gradient for the small subunit lasts for a few hours and disappears entirely after treatment with puromycin. The large subunit also forms a gradient but one which is only partially abolished by puromycin. The residual gradient which which is resistant to the addition of the drug is probably due to the binding of some large ribosomal units to the membranes of the endoplasmic reticulum (J.-E. Edstrom and u. Lonn. 1976. J. Cell Biol. 70:562-572, and U. Lonn and J.-E. Edstrom. 1976. J. Cell. Biol. 70:573-580). If growth is inhibited by starvation, only the puromycin-sensitive type gradient is observed for the large subunit, suggesting that the attachment of these newly made subunits to the endoplasmic reticulum membranes will not occur. If, on the other hand, the drug-resistant gradient is allowed to form in feeding animals, it is conserved during a subsequent starvation for longer periods than in control feeding animals. This observation provides a further support for an effect of starvation on the normal turnover of the large subunits associated with the endoplasmic reticulum. These results also indicate a considerable structural stability in the cytoplasm of these cells worth little or no gross redistribution of cytoplasmic structures over a period of at least 6 days.  相似文献   
8.
1. The lysosomal forms A and B, and an intermediate form I of N-acetyl-beta-D-hexosaminidase (EC 3.2.1.30) were isolated from bovine brain, resulting in the following purification factors and specific activities: hexosaminidase A 20255, 103 U mg-1; hexosaminidase B 34715, 134 U mg-1; hexosaminidase I 15241, 78 U mg-1. 2. The molecular weights of the polypeptide chains were identical for each isoenzyme: two bands of 50 and 53 k daltons were found. 3. Carbohydrate analysis showed the presence of mannose, galactose, N-acetylglucosamine and sialic acid. This composition, and the absence of N-acetylgalactosamine, indicated that only N-glycosidically linked oligosaccharide chains are present. 4. The amino-acid composition showed no substantial differences for the three isoenzymes.  相似文献   
9.
What causes the positive, negative, and cognitive symptoms of schizophrenia? The importance of circuits is underscored by the finding that no single gene contributes strongly to the disease. Thus, some circuit abnormality to which many proteins can contribute is the likely cause. There are several major hypotheses regarding the circuitry involved: first, a change in the balance of excitation/inhibition in the prefrontal cortex (PFC); second, abnormal EEG oscillations in the gamma range; third, an increase in theta/delta EEG power related to changes in the thalamus (particularly midline nuclei); fourth, hyperactivity in the hippocampus and consequent dopamine hyperfunction; and fifth, deficits in corollary discharge. Evidence for these hypotheses will be reviewed.  相似文献   
10.
Over-activation of excitatory NMDA receptors and the resulting Ca2+ overload is the main cause of neuronal toxicity during stroke. CaMKII becomes misregulated during such events. Biochemical studies show either a dramatic loss of CaMKII activity or its persistent autonomous activation after stroke, with both of these processes being implicated in cell toxicity. To complement the biochemical data, we monitored CaMKII activation in living hippocampal neurons in slice cultures using high spatial/temporal resolution two-photon imaging of the CaMKIIα FRET sensor, Camui. CaMKII activation state was estimated by measuring Camui fluorescence lifetime. Short NMDA insult resulted in Camui activation followed by a redistribution of its protein localization: an increase in spines, a decrease in dendritic shafts, and concentration into numerous clusters in the cell soma. Camui activation was either persistent (> 1–3 hours) or transient (~20 min) and, in general, correlated with its protein redistribution. After longer NMDA insult, however, Camui redistribution persisted longer than its activation, suggesting distinct regulation/phases of these processes. Mutational and pharmacological analysis suggested that persistent Camui activation was due to prolonged Ca2+ elevation, with little impact of autonomous states produced by T286 autophosphorylation and/or by C280/M281 oxidation. Cell injury was monitored using expressible mitochondrial marker mito-dsRed. Shortly after Camui activation and clustering, NMDA treatment resulted in mitochondrial swelling, with persistence of the swelling temporarily linked to the persistence of Camui activation. The results suggest that in living neurons excitotoxic insult produces long-lasting Ca2+-dependent active state of CaMKII temporarily linked to cell injury. CaMKII function, however, is to be restricted due to strong clustering. The study provides the first characterization of CaMKII activation dynamics in living neurons during excitotoxic insults.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号