首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   21篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   11篇
  2014年   11篇
  2013年   8篇
  2012年   13篇
  2011年   10篇
  2010年   11篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   10篇
  1997年   8篇
  1996年   8篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1985年   10篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
1.
Microtubule-organizing centers recruit α- and β-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs) A–E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD) is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into “centriolar rosettes”. These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.  相似文献   
2.
Summary The gas exchange and water relations of the hemiparasite Pthirusa maritima and two its mangrove host species, Conocarpus erectus and Coccoloba uvifera, were studied in an intertidal zone of the Venezuelan coast. Carbon uptake and transpiration, leaf osmotic and total water potential, as well as nutrient content in the xylem sap and leaves of mistletoes and hosts were followed through the dry and wet season. In addition, carbon isotope ratios of leaf tissue were measured to further evaluate water use efficiency. Under similar light and humidity conditions, mistletoes had higher transpiration rates, lower leaf water potentials, and lower water use efficiencies than their hosts. Potassium content was much higher in mistletoes than in host leaves, but mineral nutrient content in the xylem sap of mistletoes was relatively low. The resistance of the liquid pathway from the soil to the leaf surface of mistletoes was larger than the total liquid flow resistance of host plants. Differences in the daily cycles of osmotic potential of the xylem sap also indicate the existence of a high resistance pathway along the vascular connection between the parasite pathway along the vascular connection between the parasite and its host. P. maritima mistletoes adjust to the different physiological characteristics of the host species which it parasitizes, thus ensuring an adequate water and carbon balance.  相似文献   
3.
4.
Membranes enriched in ATP-dependent proton transport were prepared from suspension cultures of tomato cells (Lycopersicon esculentum Mill cv VF36). Suspension cultures were a source of large quantities of membranes from rapidly growing, undifferentiated cells. Proton transport activity was assayed as quench of acridine orange fluorescence. The activity of the proton translocating ATPase and of several other membrane enzymes was measured as a function of the cell culture cycle. The relative distribution of the enzymes between the 3,000, 10,000, and 100,000g pellets remained the same throughout the cell culture cycle, but yield of total activity and activity per gram fresh weight with time had a unique profile for each enzyme tested. Maximal yield of the proton translocating ATPase activity was obtained from cells in the middle logarithmic phase of growth, and from 50 to 90% of the activity was found in the 10,000g pellet. The proton translocating ATPase activity was separable from NADPH cytochrome c reductase and cytochrome c oxidase on a sucrose gradient. Proton transport activity had a broad pH optimum (7.0-8.0), was stimulated by KCl with a Km of 5 to 10 millimolar, stimulation being due to the anion, Cl, and not the cation, K+, and was not inhibited by vanadate, but was inhibited by NO3. The activity is tentatively identified as the tonoplast ATPase.  相似文献   
5.
Levels of mitochondrial DNA (mtDNA) sequence divergence between species within each of several avian (Anas, Aythya, Dendroica, Melospiza, and Zonotrichia) and nonavian (Lepomis and Hyla) vertebrate genera were compared. An analysis of digestion profiles generated by 13-18 restriction endonucleases indicates little overlap in magnitude of mtDNA divergence for the avian versus nonavian taxa examined. In 55 interspecific comparisons among the avian congeners, the fraction of identical fragment lengths (F) ranged from 0.26 to 0.96 (F = 0.46), and, given certain assumptions, these translate into estimates of nucleotide sequence divergence (p) ranging from 0.007 to 0.088; in 46 comparisons among the fish and amphibian congeners, F values ranged from 0.00 to 0.36 (F = 0.09), yielding estimates of P greater than 0.070. The small mtDNA distances among avian congeners are associated with protein-electrophoretic distances (D values) less than approximately 0.2, while the mtDNA distances among assayed fish and amphibian congeners are associated with D values usually greater than 0.4. Since the conservative pattern of protein differentiation previously reported for many avian versus nonavian taxa now appears to be paralleled by a conservative pattern of mtDNA divergence, it seems increasingly likely that many avian species have shared more recent common ancestors than have their nonavian taxonomic counterparts. However, estimates of avian divergence times derived from mtDNA- and protein-calibrated clocks cannot readily be reconciled with some published dates based on limited fossil remains. If the earlier paleontological interpretations are valid, then protein and mtDNA evolution must be somewhat decelerated in birds. The empirical and conceptual issues raised by these findings are highly analogous to those in the long-standing debate about rates of molecular evolution and times of separation of ancestral hominids from African apes.   相似文献   
6.
Statistical methods for computing the standard errors of the branching points of an evolutionary tree are developed. These methods are for the unweighted pair-group method-determined (UPGMA) trees reconstructed from molecular data such as amino acid sequences, nucleotide sequences, restriction-sites data, and electrophoretic distances. They were applied to data for the human, chimpanzee, gorilla, orangutan, and gibbon species. Among the four different sets of data used, DNA sequences for an 895-nucleotide segment of mitochondrial DNA (Brown et al. 1982) gave the most reliable tree, whereas electrophoretic data (Bruce and Ayala 1979) gave the least reliable one. The DNA sequence data suggested that the chimpanzee is the closest and that the gorilla is the next closest to the human species. The orangutan and gibbon are more distantly related to man than is the gorilla. This topology of the tree is in agreement with that for the tree obtained from chromosomal studies and DNA-hybridization experiments. However, the difference between the branching point for the human and the chimpanzee species and that for the gorilla species and the human-chimpanzee group is not statistically significant. In addition to this analysis, various factors that affect the accuracy of an estimated tree are discussed.   相似文献   
7.
The replication and incompatibility region of the IncFVI plasmid pSU502 has been isolated by in vitro DNA manipulation as part of a 12.6 kb plasmid, denominated pSU503. Plasmid pSU503 was strongly incompatible with its parental plasmid, pSU1, but was fully compatible with the haemolytic plasmids pSU316 (IncFIII/IV), pHly152 (IncI2) and pSU233 (Inc-pSU233). Furthermore, the 6.9 kb EcoRI fragment of pSU503 which carries the replication and incompatibility determinants of pSU1 did not show any detectable homology (less than 70%) with any of the haemolysin-determining plasmids with which it is compatible. Thus, homologous haemolysin determinants have become linked to apparently unrelated replicons.  相似文献   
8.
A puzzling population-genetic phenomenon widely reported in allozyme surveys of marine bivalves is the occurrence of heterozygote deficits relative to Hardy-Weinberg expectations. Possible explanations for this pattern are categorized with respect to whether the effects should be confined to protein-level assays or are genomically pervasive and expected to be registered in both protein- and DNA-level assays. Anonymous nuclear DNA markers from the American oyster were employed to reexamine the phenomenon. In assays based on the polymerase chain reaction (PCR), two DNA-level processes were encountered that can lead to artifactual genotypic scorings: (a) differential amplification of alleles at a target locus and (b) amplification from multiple paralogous loci. We describe symptoms of these complications and prescribe methods that should generally help to ameliorate them. When artifactual scorings at two anonymous DNA loci in the American oyster were corrected, Hardy-Weinberg deviations registered in preliminary population assays decreased to nonsignificant values. Implications of these findings for the heterozygote-deficit phenomenon in marine bivalves, and for the general development and use of PCR-based assays, are discussed.   相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号