首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   35篇
  457篇
  2017年   5篇
  2016年   7篇
  2015年   11篇
  2014年   11篇
  2013年   9篇
  2012年   8篇
  2011年   5篇
  2010年   15篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   10篇
  2005年   8篇
  2003年   7篇
  2001年   5篇
  2000年   7篇
  1999年   9篇
  1998年   7篇
  1997年   6篇
  1996年   18篇
  1995年   10篇
  1994年   5篇
  1993年   10篇
  1992年   8篇
  1991年   7篇
  1989年   4篇
  1988年   7篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1983年   4篇
  1982年   5篇
  1981年   6篇
  1980年   8篇
  1979年   7篇
  1978年   7篇
  1975年   7篇
  1974年   8篇
  1973年   6篇
  1972年   8篇
  1958年   21篇
  1957年   17篇
  1956年   13篇
  1955年   7篇
  1954年   10篇
  1953年   9篇
  1952年   6篇
  1951年   5篇
  1950年   11篇
  1949年   8篇
排序方式: 共有457条查询结果,搜索用时 0 毫秒
1.
Germ Cell Nuclear Factor: An Orphan Receptor in Search of a Function   总被引:1,自引:0,他引:1  
Germ Cell Nuclear Factor (GCNF) is an orphan member of the nuclearreceptor gene superfamily. Much has been understood about thefunctioning of GCNF which represents a candidate receptor fora novel hormonal signalling pathway. GCNF is not closely relatedto other members of the nuclear receptor superfamily and formsits own branch within the superfamily tree. It has a uniqueexpression pattern that spans both embryonic and adult stagesof development. In the adult, it is expressed in the germ cells:oocytes and spermatogenic cells as well as specific neuronalcells within the brain. In the embryo, GCNF expression is turnedon after gastrulation in all germ layers the ectoderm, mesodermand endoderm. An antero-posterior gradient of GCNF is establishedin the neuroectoderm of the embryo, suggesting a role in regulationof neuronal and germ cell development. Regulation of physiologicalprocesses by a nuclear receptor is achieved through regulationof gene expression. GCNF is the only nuclear receptor to specifcallybind to DR0 hormone response elements to regulate gene expression.In the absense of a ligand, GCNF represses gene expression.GCNF is capable of regulating the expression of the protaminegenes in a response element-dependent manner. At present theligand for GCNF is unknown, but it is hypothesized that GCNFis a receptor for a novel hormonal signalling pathway that effectsits biological response by regulating the expression of a subsetof genes containing DR0 response elements.  相似文献   
2.
JACKSON  MIKE 《Annals of botany》2003,91(7):940-941
This book for students new to plant biology emphasizes the functionalside of plant life. Although the topic is large, Irene Ridgeand her five co-writers (Mary Bell, Hilary Denny, Jeremy Roberts,Sue Downs and Phil Parker) have kept the size down to a lengththat is well suited to the study desk rather than the coffeetable. Careful reading of this thoughtfully prepared text byany reasonably diligent student should establish a sound butflexible framework on which to base future years of botanicallearning. The book distils many of the essentials but stillleaves the reader feeling in touch  相似文献   
3.
Are Roots a Source of Abscisic Acid for the Shoots of Flooded Pea Plants?   总被引:4,自引:1,他引:3  
Flooding the soil for 2–5 d decreased stomatal conductancesof pea plants (Pisum sativum L., cv. Sprite) with six or sevenleaves. This coincided with slower transpiration, increasedleaf water potentials and increased concentrations of abscisicacid (ABA) in the leaves. No increase in ABA was found in theterminal 20 mm of roots of flooded plants over the same timeperiod. Small stomatal conductances associated with increases in foliarABA were also found in plants grown in nutrient solution whenaeration was halted, causing the equilibrium partial pressuresof dissolved oxygen to fall below 05 It Pa. No increase in ABAconcentration in young secondary roots of the non-aerated plantswas detected after 24, 48 or 72 h, even when the shoot, thepresumed site of deposition for any ABA from the roots, wasremoved 5–6 h before analysis. Similarly, ABA concentrations in roots were not increased whenthe nutrient solution was de-oxygenated by continuous purgingwith nitrogen gas. The abscisic acid concentration in leaf epidermis,the tissue most likely to be the recipient of any ABA movingin the transpiration stream from oxygen-deficient roots, waslower than in the remaining parts of the leaf when examinedin the mutant Argenteum which possesses easily removable epidermallayers. It is concluded that the leaves of plants subjectedto flooding of the soil or oxygen shortage in the root environmentare not enriched substantially with ABA from the roots. A moreprobable source of this growth regulator is the leaf itself. Key words: Pisum sativum, flooding, roots, hormones, aeration stress, abscisic acid, Argenteum mutant  相似文献   
4.
Flooding the soil for 5–7 d caused partial desiccationin leaves of pea plants (Pisum sativum. L. cv. ‘Sprite’).The injury was associated with anaerobiosis in the soil, a largeincrease in the permeability of leaf tissue to electrolytesand other substances, a low leaf water content and an increasedwater saturation deficit (WSD). Desiccating leaves also lackedthe capacity to rehydrate in humid atmospheres, a disabilityexpressed as a water resaturation deficit (WRSD). This irreversibleinjury was preceded during the first 4–5 d of floodingby closure of stomata within 24 h, decreased transpiration,an unusually large leaf water content and small WSD. Leaf waterpotentials were higher than those in well-drained controls.Also, there was no appreciable WRSD. Leaflets detached fromflooded plants during this early phase retained their watermore effectively than those from controls when left exposedto the atmosphere for 5 min. Stomatal closure and the associated increase in leaf hydrationcould be simulated by excising leaves and incubating them withtheir petioles in open vials of water. Thus, such changes inflooded plants possibly represented a response to a deficiencyin the supply of substances that would usually be transportedfrom roots to leaves in healthy plants (negative message). Ionleakage and the associated loss of leaf hydration that occurswhen flooding is extended for more than 5 d could not be simulatedby isolating the leaves from the roots. Appearance of this symptomdepended on leaves remaining attached to flooded root systems,implying that the damage is caused by injurious substances passingupwards (positive message). Both ethylene and ethanol have beeneliminated as likely causes, but flooding increased phosphorusin the leaves to concentrations that may be toxic. Key words: Pisum sativum, Flooding, Foliar desiccation, Stomata, Ethylene  相似文献   
5.
Wheat and oat were grown for 20 d on a nitrate-containing solution(nitrogen-replete plants) or for the last 6 d of this periodon a nitrate-free solution (nitrogen-depleted plants). Exposureof the nitrogen-depleted plants on day 20 to nitrate-free solutionscontaining 500 mmol m–3 ammonium (96 A% 15N) resultedin a cumulative net influx of 15N-ammonium over an 8 h periodthat was appreciably greater than that of the nitrogen-repleteplants. Both the initial rate and the more restricted rate afterthe first hour were enhanced by nitrogen deprivation. In thenitrogen-replete plants, cumulative net efflux of endogenous14N-ammonium was approximately equivalent to net ammonium uptakeduring the first hour, and was essentially complete after 1–2h. Pretreating nitrogen-depleted plants for 5 h in 500 mmolm–3 15N-ammonium (99 A% 15N) resulted in root ammoniumconcentrations of 12.7?1.1 and 16.0?0.4 µmol for wheat and oat, respectively. Subsequent net efflux of 15N-ammoniumto 500 mmol m–3 exogenous 14N-ammonium exceeded theseinitial amounts within 2 h. Increasing ambient 14N-ammoniumto 5000 mmol m–3 increased net 15N-ammonium efflux suchthat net loss of the maximal original amount in the root tissuewas exceeded within 0.75 h. The data for both species indicatesubstantial reciprocal transfers of ammonium into and out ofroots of ammonium-treated plants and a significant degradationof recently synthesized products of ammonium assimilation concurrentwith ammonium assimilation. Key words: Accumulation, ammonium, efflux, oat, root, uptake, wheat  相似文献   
6.
Ethylene production by primary roots of 72–h-old intact seedlings of Zea mays L. cv. LG11 was studied under ambient and sub-ambient oxygen partial pressures (pO2) using a gas flow-through system linked to a photoacoustic laser detector. Despite precautions to minimize physical perturbation to seedlings while setting-up, ethylene production in air was faster during the first 6h than later, in association with a small temporary swelling of the roots. When roots were switched from air (20–8kPa O2) to 3 or 5kPa O2 after 6h, ethylene production increased within 2—3 h. When, the roots were returned to air 16 h later, ethylene production decreased within 2—3 h. The presence of 10kPa CO2 did not interfere with the effect of 3kPa O2. Transferring roots from air to 12–5kPa did not change ethylene production, while a reduction to 1 kPa O2 induced a small increase. The extra ethylene formed in 3 and 5 kPa O2 was associated with plagiotropism, swelling, root hair production, and after 72 h, increased amounts of intercellular space (aerenchyma) in the root cortex. Root extension was also slowed down, but the pattern of response to oxygen shortage did not always match that of ethylene production. On return to air, subsequent growth patterns became normal within a few hours. In the complete absence of oxygen, no ethylene production was detected, even when anaerobic roots were returned to air after 16 h.  相似文献   
7.
Stomatal control of crown transpiration was studied in Anacardium excelsum, a large-leaved, emergent canopy species common in the moist forests of Central and northern South America. A construction crane equipped with a gondola was used to gain access to the uppermost level in the crown of a 35-m-tall individual. Stomatal conductance at the single leaf scale, and transpiration and total vapour phase conductance (stomatal and boundary layer) at the branch scale were measured simultaneously using the independent techniques of porometry and stem heat balance, respectively. This permitted the sensitivity of transpiration to a marginal change in stomatal conductance to be evaluated using a dimensionless coupling coefficient (1-ω) ranging from zero to 1, with 1 representing maximal stomatal control of transpiration. Average stomatal conductance varied from 0.09 mol m?2 s?1 during the dry season to 0.3 mol m?2 s?1 during the wet season. Since boundary layer conductance was relatively low (0.4 mol m?2 s?1), 1-ω ranged from 0.46 during the dry season to only 0.25 during the wet season. A pronounced stomatal response to humidity was observed, which strongly limited transpiration as evaporative demand increased. The stomatal response to humidity was apparent only when the leaf surface was used as the reference point for measurement of external vapour pressure. Average transpiration was predicted to be nearly the same during the dry and wet seasons despite a 1 kPa difference in the prevailing leaf-to-air vapour pressure difference. The patterns of stomatal behaviour and transpiration observed were consistent with recent proposals that stomatal responses to humidity are based on sensing the transpiration rate itself.  相似文献   
8.
The formation of mouse coat color is a relatively complex developmental process that is affected by a large number of mutations, both naturally occurring and induced. The cloning of the genes in which these mutations occur and the elucidation of the mechanisms by which these mutations disrupt the normal pigmentation pattern is leading to an understanding of the way interactions between gene products lead to a final phenotype.  相似文献   
9.
FRANCISCO-ORTEGA, J., JACKSON, M. T., SANTOS-GUERRA, A. & FORD-LLOYD, B. V., 1993. Morphological variation in the Chamaecytisus proliferus (L.f.) Link complex (Fabaceae: Genisteae) in the Canary Islands . A multivariate study (Principal Component Analysis and Cluster Analysis, Warďs method) of 47 morphological traits from 164 populations of Chamaecytisus proliferus (L.f.) Link from the Canary Islands confirmed that this species complex is formed by seven morphological types. At least eight traits discriminated between these types. Patterns of variation follow a cline within Gran Canaria, Tenerife and La Palma. These results also show that morphological variation is greater in the eastern islands (i.e. Gran Canaria and Tenerife) than in the western islands (La Gomera, El Hierro and La Palma) and that no morphological differences are found between plants of typical tagasaste from wild and cultivated populations.  相似文献   
10.
The Light mutation (Blt) is a dominant allele of the b-locus on mouse chromosome 4 which causes progressive dilution of coat colour. Melanocytes within the hair follicles of mutant mice develop normally but later degenerate, due to the accumulation of a toxic product, so that the hair becomes lighter with age. Previous studies on W-locus spotting mutants, from which melanocytes are absent, have shown that melanocytes in the stria vascularis of the inner ear are essential for the development and/or maintenance of the endocochlear potential (EP) which is normally around 100 mV. In this study, physiological recordings from the ears of Light mutants were correlated with strial ultrastructure. EPs recorded from all b/b controls and young homozygous and heterozygous mutants (20–22 days old) were normal (77 to 113 mV), but were reduced (19 to 59 mV) in about 30% of ears from older mutants (Blt/Blt and Blt/b). Strial function therefore appears to develop normally but later degenerates in some mutants. This suggests that strial melanocytes are affected by the Light allele and that the continued presence of melanocytes is necessary for strial function. There was no obvious association between the recorded EP value and the ultrastructural appearance of the stria. No structural abnormalities of the stria were noted in control or mutant mice aged 20 days to 4 months including those which had a reduced EP. Strial atrophy was common in old controls and mutants (1–2 years), and appeared to be an age-related process rather than an effect of the Light mutation. Similarly, pigment build-up was common in all strial cells of old mice. However, the accumulations of lipofuscin-like pigment were much larger and more abundant in aged brown non-agouti mice than those observed in old agouti mice, which suggests that this age-related process also has a genetic component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号