首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   52篇
  2023年   4篇
  2020年   5篇
  2019年   6篇
  2018年   5篇
  2017年   7篇
  2016年   13篇
  2015年   19篇
  2014年   17篇
  2013年   16篇
  2012年   19篇
  2011年   11篇
  2010年   11篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   14篇
  2005年   11篇
  2004年   11篇
  2003年   5篇
  2002年   6篇
  2001年   14篇
  2000年   11篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   9篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   9篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   8篇
  1985年   7篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
排序方式: 共有366条查询结果,搜索用时 484 毫秒
1.
Escherichia coli 5S RNA labeled with 15N at N3 of the uridines was isolated from the S phi-187 uracil auxotroph grown on a minimal medium supplemented with [3-15N]uracil. 1H-15N multiple quantum filtered and 2D chemical shift correlated spectra gave resonances for the uridine imino 1H-15N units whose protons were exchanging slowly with solvent. Peaks with 1H/15N shifts at 11.6/154.8, 11.7/155.0, 11.8/155.5, 12.1/155.0, and 12.2/155.0 ppm were assigned to GU interactions. Two labile high-field AU resonances at 12.6/156.8 and 12.8/157.3 ppm typical of AU pairs in a shielded environment at the end of a helix were seen. Intense AU signals were also found at 13.4/158.5 and 13.6/159.2 ppm where 1H-15N units in normal Watson-Crick pairs resonate. 1H resonances at 10.6 and 13.8 ppm were too weak, presumably because of exchange with water, to give peaks in chemical shift correlated spectra. 1H chemical shifts suggest that the resonance at 13.8 ppm represents a labile AU pair, while the resonance at 10.6 ppm is typical of a tertiary interaction between U and a tightly bound water or a phosphate residue. The NMR data are consistent with proposed secondary structures for 5S RNA.  相似文献   
2.
M Muehlbacher  C D Poulter 《Biochemistry》1988,27(19):7315-7328
Seven analogues of isopentenyl diphosphate (1) and dimethylallyl diphosphate (2) containing fluorine, epoxy, and ammonium functional groups irreversibly inhibited isopentenyl-diphosphate:dimethylallyl-diphosphate isomerase (EC 5.3.3.2) from the mold Claviceps purpurea. Inactivation kinetics, substrate protection studies, and labeling experiments demonstrated that the analogues interacted stoichiometrically with the active site of the enzyme. Radioactive enzyme-inactivator complexes were stable to extended dialysis and treatment with chaotropic reagents. The complexes resulting from inactivation of isomerase by 3-(fluoromethyl)-3-buten-1-yl diphosphate (3) and 3,4-epoxy-3-methyl-1-butyl diphosphate (4) were also stable to ion-exchange chromatography and gel electrophoresis. Stoichiometric release of fluoride ion occurred during inactivation of isomerase with 3. This observation is consistent with SN2 or SN2' displacement of fluorine by an active-site nucleophile with concomitant covalent attachment of the inactivator to the enzyme. 2-(Dimethylamino)ethyl diphosphate (9) formed a stable noncovalent complex with isomerase with Kdis less than 1.2 x 10(-10) M. The enzyme-inhibitor complex was stable in 6 M urea, but the inhibitor was partially released upon treatment with SDS and 2-mercaptoethanol at 37 degrees C for 1 h. The results indicate that 9 is a transition-state/reactive intermediate analogue where the positively charged ammonium group mimics a tertiary carbocationic species in the enzyme-catalyzed reaction.  相似文献   
3.
The N1 imino units in Escherichia coli tRNAfMet, tRNAGlu, tRNAPhe, and tRNATyr were studied by 1H-15N NMR using three different techniques to suppress signals of protons not attached to 15N. Two of the procedures, Fourier internuclear difference spectroscopy and two-dimensional forbidden echo spectroscopy permitted 1H and 15N chemical shifts to be measured simultaneously at 1H sensitivity. The tRNAs were labeled by fermentation of the uracil auxotroph S phi 187 on a minimal medium containing [1-15N]uracil. 1H and 15N resonances were detected for all of the N1 psi imino units except psi 13 at the end of the dihydrouridine stem in tRNAGlu. Chemical shifts for imino units in the tRNAs were compared with "intrinsic" values in model systems. The comparisons show that the A X psi pairs at the base of the anticodon stem in E. coli tRNAPhe and tRNATyr have psi in an anti conformation. The N1 protons of psi in other locations, including psi 32 in the anticodon loop of tRNAPhe, form internal hydrogen bonds to bridging water molecules or 2'-hydroxyl groups in nearby ribose units. These interactions permit psi to stabilize the tertiary structure of a tRNA beyond what is provided by the U it replaces.  相似文献   
4.
Isoprenoid compounds are found in all organisms. In Escherichia coli the isoprene pathway has three distinct branches: the modification of tRNA; the respiratory quinones ubiquinone and menaquinone; and the dolichols, which are long-chain alcohols involved in cell wall biosynthesis. Very little is known about procaryotic isoprene biosynthesis compared with what is known about eucaryote isoprene biosynthesis. This study approached some of the questions about isoprenoid biosynthesis and regulation in procaryotes by isolating and characterizing mutants in E. coli. Mutants were selected by determining their resistance to low levels of aminoglycoside antibiotics, which require an electron transport chain for uptake into bacterial cells. The mutants were characterized with regard to their phenotypes, map positions, enzymatic activities, and total ubiquinone content. In particular, the enzymes studied were isopentenyldiphosphate delta-isomerase (EC 5.3.3.2), farnesyldiphosphate synthetase (EC 2.5.1.1), and higher prenyl transferases.  相似文献   
5.
Farnesyl diphosphate (FPP) synthetase is a key enzyme in isoprenoid biosynthesis which supplies C15 precursors for several classes of essential metabolites including sterols, dolichols, and ubiquinones. The structural gene for FPP synthetase was isolated on a 4.5-kilobase EcoRI genomic restriction fragment from the yeast Saccharomyces cerevisiae. The clone encodes a 40,483-dalton polypeptide of 342 amino acids with a high degree of similarity to the protein encoded by a putative rat liver clone of FPP synthetase (Clarke, C. F., Tanaka, R. D., Svenson, K., Wamsley, M., Fogelman, A. M., and Edwards, P. A. (1987) Mol. Cell Biol. 7, 3138-3146) and to an active site protein fragment from avian liver FPP synthetase (Brems, D. N., Bruenger, E., and Rilling, H. C. (1981) Biochemistry 20, 3711-3718). When cloned into the yeast shuttle vector YRp17, the 4.5-kilobase EcoRI fragment directed a 2-3-fold over-expression of FPP synthetase activity in transformed yeast cells. The levels of expression were independent of culture growth phase and orientation of the insert, indicative of a functional promoter in the clone. Disruption of the FPP synthetase gene from a diploid yeast strain, followed by dissection and analysis of tetrads, demonstrates that the gene is an essential, single copy number gene in yeast. The gene for FPP synthetase resides on chromosome XI as judged from Southern blots of separated yeast chromosomes.  相似文献   
6.
7.
An Ustilago maydis ergosterol biosynthesis mutant (A14) which is partially blocked in sterol 14alpha-demethylase (P45014DM) activity is described. This mutant accumulated the abnormal 14alpha-methyl sterols, eburicol, 14alpha-methylfecosterol, and obtusifoliol, along with significant amounts of ergosterol. Although the A14 mutant grew nearly as well as the wild type, it was impaired in cell extension growth, which indicated a dysfunction in apical cell wall synthesis. The mutant was also found to be hypersensitive to the azole fungicides penconazole and tebuconazole.  相似文献   
8.
9.
Hexazonium pararosaniline is a valuable reagent that has been used in enzyme activity histochemistry for 50 years. It is an aqueous solution containing the tris-diazonium ion derived from pararosaniline, an aminotriarylmethane dye, and it contains an excess of nitrous acid that was not consumed in the diazotization reaction. Other investigators have found that immersion for 2 min in an acidic (pH 3.5) 0.0015 M hexazonium pararosaniline solution can protect cryostat sections of unfixed animal tissues from the deleterious effects of aqueous reagents such as buffered solutions used in immunohistochemistry, while preserving specific affinities for antibodies. In the present investigation hexazonium pararosaniline protected lymphoid tissue and striated muscle against the damaging effects of water or saline. The same protection was conferred on unfixed sections treated with dilute nitrous or hydrochloric acid in concentrations similar to those in hexazonium pararosaniline solutions. Model tissues (solutions, gels or films containing gelatin and/or bovine albumin) responded predictably to well known cross-linking (formaldehyde) or coagulant (mercuric chloride) fixatives. Hexazonium pararosaniline solutions prevented the dissolution of protein gels in water only after 9 or more days of contact, during which time considerable swelling occurred. It is concluded that there is no evidence for a “fixative” action of hexazonium pararosaniline. The protective effect on frozen sections of unfixed tissue is attributable probably to the low pH of the solution.  相似文献   
10.
Water hyacinth Eichhornia crassipes is considered the most damaging aquatic weed in the world. However, few studies have quantified the impact of this weed economically and ecologically, and even fewer studies have quantified the benefits of its control. This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year’s Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, medium and low. A conservative raw agriculture value of R 0.26 per m3 was used to calculate the benefits derived by the water saved. The present benefit and cost values were determined using 10% and 5% discount rates. The benefit/cost ratio at the low evapotranspiration rate was less than one, implying that biological control was not economically viable but, at the higher evapotranspiration rates, the return justified the costs of biological control. However, at the marginal value product of water, the inclusion of the costs of damage to infrastructure, or the adverse effects of water hyacinth on biodiversity, would justify the use of biological control, even at the low transpiration rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号