首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  10篇
  2017年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
排序方式: 共有10条查询结果,搜索用时 12 毫秒
1
1.
The structures of differentiating male germ cells in the testis of the giant freshwater prawn, Macrobrachium rosenbergii, were studied by light and electron microscopy. Based on ultrastructural characteristics, the developing male germ cells are classified into 12 stages, including spermatogonia, six phases of primary spermatocytes (leptotene, zygotene, pachytene, diplotene, diakinesis and metaphase), secondary spermatocyte, three stages of spermatids and mature sperm. During spermatogenesis, the differentiating germ cells have characteristics similar to those of other invertebrates, but they exhibit some unique characteristics during spermiogenesis. In particular, an early spermatid has a round nucleus with highly condensed heterochromatin, appearing as thick interconnecting cords throughout the nucleus. In contrast to most invertebrates and vertebrates, the chromatin begins to decondense in one-half of the nucleus at the mid spermatid stage. In the late spermatid, the chromatin becomes almost entirely decondensed with only a small crescent-shaped heterochromatin patch remaining at the anterior pole of the nucleus. Mature sperm possess an everted umbrella-shaped plate with a spike covering the anterior pole of the nucleus, whose chromatin is totally decondensed as only small traces of histones H3 and H2B remain. The acrosome appears at the ruffled border of the spike plate as small sac-like structures. Few mitochondria remain in the cytoplasm at the posterior pole.  相似文献   
2.
Most Gluconobacter species produce and accumulate 2-keto-d-gluconate (2KGA) and 5KGA simultaneously from d-glucose via GA in culture medium. 2KGA is produced by membrane-bound flavin adenine dinucleotide-containing GA 2-dehydrogenase (FAD-GADH). FAD-GADH was purified from "Gluconobacter dioxyacetonicus" IFO 3271, and N-terminal sequences of the three subunits were analyzed. PCR primers were designed from the N-terminal sequences, and part of the FAD-GADH genes was cloned as a PCR product. Using this PCR product, gene fragments containing whole FAD-GADH genes were obtained, and finally the nucleotide sequence of 9,696 bp was determined. The cloned sequence had three open reading frames (ORFs), gndS, gndL, and gndC, corresponding to small, large, and cytochrome c subunits of FAD-GADH, respectively. Seven other ORFs were also found, one of which showed identity to glucono-delta-lactonase, which might be involved directly in 2KGA production. Three mutant strains defective in either gndL or sldA (the gene responsible for 5KGA production) or both were constructed. Ferricyanide-reductase activity with GA in the membrane fraction of the gndL-defective strain decreased by about 60% of that of the wild-type strain, while in the sldA-defective strain, activity with GA did not decrease and activities with glycerol, d-arabitol, and d-sorbitol disappeared. Unexpectedly, the strain defective in both gndL and sldA (double mutant) still showed activity with GA. Moreover, 2KGA production was still observed in gndL and double mutant strains. 5KGA production was not observed at all in sldA and double mutant strains. Thus, it seems that "G. dioxyacetonicus" IFO 3271 has another membrane-bound enzyme that reacts with GA, producing 2KGA.  相似文献   
3.
We found that the androgenic gland (AG) of Macrobrachium rosenbergii possesses three cell types. Type I cells are small polygonal shaped-cells (13.4 μm in diameter), stain strongly with hematoxylin-eosin (H&;E), have abundant multilayered rough endoplasmic reticulum (rER), and nuclei containing mostly heterochromatin. Type II cells are slightly larger (18.6 μm in diameter), stain lightly with H&;E, have rER with dilated cisternae, and nuclei containing mostly euchromatin. Type III cells (previously undescribed) are similar in size and shape to type I cells, but the cytoplasm is unstained and they have a high amount of smooth endoplasmic reticulum (sER) and mitochondria with tubular cristae. Bilateral eyestalk-ablation resulted in AG hypertrophy with a proliferation and predominance of type I cells as determined by bromodeoxyuridine (BrdU) assays. Expression of insulin-like androgenic gland hormone (Mr-IAG), determined by immunohistochemistry, was weak in type I cells, strong in type II cells of both the intact and eyestalk-ablated, and negative in type III cells. It was also detected in spermatogonia, nurse cells, and epithelium lining of the spermatic duct. The function of Mr-IAG in these tissues is yet to be elucidated but the distribution implies a strong role in male reproduction.  相似文献   
4.
For easy measurement of 5-keto D-gluconate (5KGA) and 2-keto D-gluconate (2KGA), two enzymes, 5KGA reductase (5KGR) and 2KGA reductase (2KGR) are useful. The gene for 5KGR has been reported, and a corresponding gene was found in the genome of Gluconobacter oxydans 621H and was identified as GOX2187. On the other hand, the gene for 2KGR was identified in this study as GOX0417 from the N-terminal amino acid sequence of the partially purified enzyme. Several plasmids were constructed to express GOX2187 and GOX0417, and the final constructed plasmids showed good expression of 5KGR and 2KGR in Escherichia coli. From the two E. coli transformants, large amounts of each enzyme were easily prepared after one column chromatography, and the preparation was ready to use for quantification of 5KGA or 2KGA.  相似文献   
5.
The normal lymphoid organ of Penaeus monodon (which tested negative for WSSV and YHV) was composed of two parts: lymphoid tubules and interstitial spaces, which were permeated with haemal sinuses filled with large numbers of haemocytes. There were three permanent types of cells present in the wall of lymphoid tubules: endothelial, stromal and capsular cells. Haemocytes penetrated the endothelium of the lymphoid tubule's wall to reside among the fixed cells. The outermost layer of the lymphoid tubule was covered by a network of fibers embedded in a PAS-positive extracellular matrix, which corresponded to a basket-like network that covered all the lymphoid tubules as visualized by a scanning electron microscope (SEM). Argyrophilic reticular fibers surrounded haemal sinuses and lymphoid tubules. Together they formed the scaffold that supported the lymphoid tubule. Using vascular cast and SEM, the three dimensional structure of the subgastric artery that supplies each lobe of the lymphoid organ was reconstructed. This artery branched into highly convoluted and blind-ending terminal capillaries, each forming the lumen of a lymphoid tubule around which haemocytes and other cells aggregated to form a cuff-like wall. Stromal cells which form part of the tubular scaffold were immunostained for vimentin. Examination of the whole-mounted lymphoid organ, immunostained for vimentin, by confocal microscopy exhibited the highly branching and convoluted lymphoid tubules matching the pattern of the vascular cast observed in SEM.  相似文献   
6.
The cultivation of the mangrove-derived fungus Rhytidhysteron rufulum AS21B in acidic condition changed its secondary metabolite profile. Investigation of the culture broth extract led to the isolation and identification of two new spirobisnaphthalenes (1 and 2) together with eleven known compounds (313) from the crude extract of the fungus grown under an acidic condition as well as six known compounds (4, 10, 1417) were isolated from the crude extract of the fungus grown under a neutral condition. Their structures were elucidated on the basis of extensive spectroscopic data. The isolated compounds were evaluated for their cytotoxicity against two human cancer cell lines, Ramos lymphoma and drug resistant NSCLC H1975. Compounds 2 and 10 displayed the most promising anti-tumor activity against both cancer cell lines.  相似文献   
7.
8.
We isolated thermotolerant Gluconobacter strains that are able to produce 5-keto-d-gluconic acid (5KGA) at 37°C, a temperature at which regular mesophilic 5KGA-producing strains showed much less growth and 5KGA production. The thermotolerant strains produced 2KGA as the major product at both 30 and 37°C. The amount of ketogluconates produced at 37°C was slightly less than the amount produced at 30°C. To improve the yield of 5KGA in these strains, we disrupted flavin adenine dinucleotide-gluconate dehydrogenase (FAD-GADH), which is responsible for 2KGA production. Genes for FAD-GADH were cloned by using inverse PCR and an in vitro cloning strategy. The sequences obtained for three thermotolerant strains were identical and showed high levels of identity to the FAD-GADH sequence reported for the genome of Gluconobacter oxydans 621 H. A kanamycin resistance gene cassette was used to disrupt the FAD-GADH genes in the thermotolerant strains. The mutant strains produced 5KGA exclusively, and the final yields were over 90% at 30°C and 50% at 37°C. We found that the activity of pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase, which is responsible for 5KGA production, increased in response to addition of PQQ and CaCl2 in vitro when cells were grown at 37°C. Addition of 5 mM CaCl2 to the culture medium of the mutant strains increased 5KGA production to the point where over 90% of the initial substrate was converted. The thermotolerant Gluconobacter strains that we isolated in this study provide a promising new option for industrial 5KGA production.Gluconobacter is a genus of acetic acid bacteria that are able to oxidize a broad range of sugars, sugar alcohols, and sugar acids, and large amounts of the corresponding oxidized products accumulate in the culture medium. Such “incomplete” oxidation is carried out by membrane-bound enzymes, whose catalytic sites face the periplasm. These enzymes catalyze the dehydrogenization of d-glucose, d-sorbitol, d-mannitol, glycerol, d-gluconate, and the keto-d-gluconates. All of these enzymes are firmly attached to the cytoplasmic membrane, and the electrons abstracted from the substrates are passed on to ubiquinone and then to terminal ubiquinol oxidases, forming simple respiratory chains which create the membrane potential necessary to produce biological energy for these microorganisms.The oxidation of d-glucose to ketogluconates is known to be catalyzed by a series of enzymes. Pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase oxidizes d-glucose to glucono-δ-lactone, and then gluconolactonase converts the glucono-δ-lactone to d-gluconate. The formation of ketogluconates in Gluconobacter strains has been reported to be catalyzed by two types of membrane-bound gluconate dehydrogenases (GADH) (10). One type is flavin adenine dinucleotide (FAD)-GADH, an FAD-containing, 2-keto-d-gluconate (2KGA)-producing enzyme, and the other type is a PQQ-containing, 5-keto-d-gluconate (5KGA)-producing enzyme. The former enzyme has three subunits: an FAD-containing dehydrogenase, a c-type cytochrome subunit containing three hemes, and a small subunit of unknown function (17). The latter enzyme, which produces 5KGA, is identical to the PQQ-containing polyol dehydrogenase (9), which is known as d-arabitol dehydrogenase (1), d-sorbitol dehydrogenase (20), or PQQ-dependent glycerol dehydrogenase (PQQ-GLDH) (2). PQQ-GLDH has broad substrate specificity but high regio- and stereospecificity, and it catalyzes reactions as predicted by the Bertrand-Hudson rule. This enzyme can oxidize d-gluconate only at the C-5 position to produce 5KGA from d-gluconate; however, the affinity of the enzyme for d-gluconate is quite low. The gene encoding this enzyme was cloned from Gluconobacter suboxydans IFO 3255 (11), and two open reading frames (ORFs) were found. One of these ORFs is believed to encode a hydrophobic protein with five membrane-spanning regions, and the other encodes a dehydrogenase subunit similar to that found in several PQQ-dependent enzymes, particularly the PQQ domain of membrane-bound glucose dehydrogenase. In contrast, 2KGA reductase and 5KGA reductase, the NADPH-dependent enzymes located in the cytoplasm, are thought to be involved in gluconate metabolism in the assimilation of 2KGA and 5KGA.5KGA is a useful raw material for the production of tartaric acid and xylaric acid and is used as a precursor for the synthesis of a number of flavor compounds, including 4-hydroxy-5- methyl-2,3-dihydrofuranone-3 (15). Moreover, it has been reported that 5KGA can be used to produce vitamin C by Gray''s method (6, 7), which is different from Reichstein''s method, which is now commonly used in industry. Reichstein''s method requires the use of high temperatures and an organic solvent in processing; however, Gray''s method does not.Most Gluconobacter strains produce both 2KGA and 5KGA from d-gluconate. Thus, production of 5KGA by Gluconobacter species generates 2KGA as a major by-product, and production of the two ketogluconates is competitive in vivo. Recently, an FAD-GADH-defective mutant strain of Gluconobacter oxydans 621 H which produced almost exclusively 5KGA from d-glucose was discovered (5). However, the optimum temperature for production of 5KGA in this mesophilic strain was around 20°C (19). For cost-effective industrial synthesis of 5KGA, we sought to develop a Gluconobacter strain which is able to produce 5KGA at higher temperatures, such as 37°C, in order to reduce the cost of cooling during fermentation.We successfully isolated thermotolerant Gluconobacter strains that are able to produce 5KGA at 37°C. We cloned the FAD-GADH gene and constructed FAD-GADH-defective mutants that produced almost exclusively 5KGA from d-gluconate at both ambient temperatures and higher temperatures up to 37°C. We believe that the thermotolerant strains reported in this study should be useful for industrial 5KGA production.  相似文献   
9.
We used antibodies against octopus gonadotropin-releasing hormone (octGnRH) and tunicate GnRH (tGnRH-I) in order to investigate the existence and distribution of GnRH-like peptides in the central nervous system (CNS) and in the ovary during various stages of the ovarian cycle of the white shrimp, Litopenaeus vannamei. OctGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in several regions of the supraesophageal ganglion (brain), subesophageal ganglion (SEG), thoracic ganglia, and abdominal ganglia. In the brain, both octGnRH immunoreactivity (ir) and tGnRH-I-ir were detected in neurons of clusters 6, 11, 17, and associated fibers, and the anterior medial protocerebral, posterior medial protocerebral, olfactory, and tegumentary neuropils. In the SEG and thoracic ganglia, octGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in dorsolateral and ventromedial cell clusters and in surrounding fibers. Only immunoreactive fibers were detected in the abdominal ganglia. In the ovary, both octGnRH and tGnRH-I were detected at medium intensity in the cytoplasm of early step oocytes (Oc2) and, at high intensity, in Oc3. Furthermore, octGnRH-ir and tGnRH-I-ir were intense in follicular cells surrounding Oc2 and Oc3. The presence of GnRH-ir in the CNS and ovary indicates that GnRH-like peptides occur in the white shrimp, and that GnRHs are involved in the reproductive process, especially ovarian maturation and the differentiation of oocytes, as reported in other species.  相似文献   
10.
Phosphorylated sperm proteins are crucial for sperm maturation and capacitation as a priori to their fertilization with eggs. In the freshwater prawn, Macrobrachium rosenbergii, a male reproduction-related protein (Mar-Mrr) was known to be expressed only in the spermatic ducts as a protein with putative phosphorylation and may be involved in sperm capacitation in this species. We investigated further the temporal and spatial expression of the Mar-Mrr gene using RT-PCR and in situ hybridization and the characteristics and fate of the protein using immunblotting and immunocytochemistry. The Mar-Mrr gene was first expressed in 4-week-old post larvae and the protein was produced in epithelial cells lining the spermatic ducts, at the highest level in the proximal region and decreased in the middle and distal parts. The native protein had a MW of 17 kDa and a high degree of serine/threonine phosphorylation. It was transferred from the epithelial cells to become a major protein at the anterior region of the sperm. We suggest that it is involved in sperm capacitation and fertilization in this open thelycal species and this is being investigated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号