首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   3篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   14篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1991年   2篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有65条查询结果,搜索用时 497 毫秒
1.
Proteins antigenically similar to the acyl carrier protein (ACP) found in the mitochondria of Neurospora crassa were detected by immunoblotting and radioimmunoassay techniques in mitochondria isolated from yeast, potatoes, and pea leaves. These mitochondrial proteins were similar to Neurospora ACP both in their electrophoretic mobility and in their unusual decrease in mobility upon reduction. Authentic ACP(s) show this type of change upon conversion of the acylated to the unacylated form. Purified ACP from both spinach chloroplasts and Escherichia coli cells cross-reacted with antibodies raised against Neurospora ACP. Purified ACP from Neurospora cross-reacted with antibodies raised against spinach chloroplast ACP and E. coli ACP. Mitochondria isolated from beef heart and rat brain were tested extensively and exhibited no cross-reaction with any of the three anti-ACP preparations. The discovery of ACP in the mitochondria of other organisms raises questions concerning the possible relationship between ACP and beta-oxidation in mitochondria, the involvement of ACP in de novo biosynthesis of some of the acyl chains in mitochondria and the subcellular locations of fatty acid biosynthesis in plants and eucaryotic micro-organisms.  相似文献   
2.
Mutations in the Drosophila ninaA gene cause dramatic reductions in rhodopsin levels, leading to impaired visual function. The ninaA protein is a homolog of peptidyl-prolyl cis-trans isomerases. We find that ninaA is unique among this family of proteins in that it is an integral membrane protein, and it is expressed in a cell type-specific manner. We have used transgenic animals misexpressing different rhodopsins in the major class of photoreceptor cells to demonstrate that ninaA is required for normal function by two homologous rhodopsins, but not by a less conserved member of the Drosophila rhodopsin gene family. This demonstrates in vivo substrate specificity in a cyclophilin-like molecule. We also show that vertebrate retina contains a ninaA-related protein and that ninaA is a member of a gene family in Drosophila. These data offer insights into the in vivo role of this important family of proteins.  相似文献   
3.
Prostaglandin E1(PGE1), one of the components in the hormone-supplemented, serum-free medium for Madin Darby Canine Kidney (MDCK) cells (Medium K-1), is required for both long-term growth and for dome formation. Variant cells have been isolated from MDCK populations, which lack the PGE1, requirement for long-term growth in Medium K-1. These variants will be useful in identifying the molecular events initiated by PGE1 which are necessary for the growth response to be observed. The growth and functional properties of five independently isolated PGE1 independent clones have been examined. Normal MDCK cells grew at an equivalent rate in Medium K-1 and in serum-supplemented medium; the growth rate was lower in Medium K-1 lacking PGE1. In contrast, PGE1 independent clone 1 grew at an equivalent rate in Medium K-1 minus PGE1, and in serum-supplemented medium. When PGE1 was added to K-1 minus PGE1, less growth of PGE1 independent clone 1 was observed. A similar observation was made with one other PGE1 independent clone which was studied. A hormone deletion study indicated that PGE1 independent clone 1 still retained growth responses to the other four supplements in Medium K-1 (insulin, transferrin, T3, and hydrocortisone). The molecular alterations associated with loss of the PGE1 requirement for long-term growth were examined. At confluency, all of the PGE1 independent clones studied had higher intracellular cyclic AMP levels following PGE1 treatment, as compared with normal MDCK cells. The increased cyclic AMP levels in the variant cells could result from a number of different types of defects, including reduced cyclic adenylic acid (cyclic AMP) efflux, an increased affinity of PGE2 for the PGE1 receptor, or a defect in cyclic AMP metabolism. However, in all of the variant clones studied a decreased rate of cyclic AMP degradation by cyclic AMP phosphodiesterase was observed. Thus, the increased cyclic AMP levels in the PGE1 independent variants may result from alterations which affect cyclic AMP metabolism. The effect of PGE1 on dome formation by the variant cells was also examined. The frequency of dome formation by PGE1 independent clone 1 was enhanced in a dosage-dependent manner, like normal MDCK cells. This observation suggests that PGE1 affects MDCK cell growth and dome formation by different mechanisms.  相似文献   
4.
5.
Inhibitors of histone deacetylases (HDAC) are emerging as a promising class of anti-cancer agents. The mercaptoacetoamide-based inhibitors are reported to be less toxic than hydroxamate and are worthy of further consideration. Therefore, we have designed a series of analogs as potential inhibitors of HDACs, in which the mercaptoacetamide group was replaced by (mercaptomethyl)fluoroalkene, and their HDAC inhibitory activity was evaluated. Subnanomolar inhibition was observed for all synthetic compounds.  相似文献   
6.
Human cytosolic sialidase (Neuraminidase 2, NEU2) catalyzes the removal of terminal sialic acid residues from glycoconjugates. The effect of siastatin B, known as a sialidase inhibitor, has not been evaluated toward human NEU2 yet. We studied the regulation of NEU2 activity by siastatin B in vitro and predicted the interaction in silico. Inhibitory and stabilizing effects of siastatin B were analyzed in comparison with DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid) toward 4-umbelliferyl N-acetylneuraminic acid (4-MU-NANA)- and α2,3-sialyllactose-degrading activities of recombinant NEU2 produced by E. coli GST-fusion gene expression. Siastatin B exhibited to have higher competitive inhibitory activity toward NEU2 than DANA at pH 4.0. We also revealed the stabilizing effect of siastatin B toward NEU2 activity at acidic pH. Docking model was constructed on the basis of the crystal structure of NEU2/DANA complex (PDB code: 1VCU). Molecular docking predicted that electrostatic neutralization of E111 and E218 residues of the active pocket should not prevent siastatin B from binding at pH 4.0. The imino group (1NH) of siastatin B can also interact with D46, neutralized at pH 4.0. Siastatin B was suggested to have higher affinity to the active pocket of NEU2 than DANA, although it has no C7–9 fragment corresponding to that of DANA. We demonstrated here the pH-dependent affinity of siastatin B toward NEU2 to exhibit potent inhibitory and stabilizing activities. Molecular interaction between siastatin B and NEU2 will be utilized to develop specific inhibitors and stabilizers (chemical chaperones) not only for NEU2 but also the other human sialidases, including NEU1, NEU3 and NEU4, based on homology modeling.  相似文献   
7.
Endogenous opioid peptides consist of a conserved amino acid residue of Phe(3) and Phe(4), although their binding modes for opioid receptors have not been elucidated in detail. Endomorphin-2, which is highly selective and specific for the mu opioid receptor, possesses two Phe residues at the consecutive positions 3 and 4. In order to clarify the role of Phe(3) and Phe(4) in binding to the mu receptor, we synthesized a series of analogs in which Phe(3) and Phe(4) were replaced by various amino acids. It was found that the aromaticity of the Phe-beta-phenyl groups of Phe(3) and Phe(4) is a principal determinant of how strongly it binds to the receptor, although better molecular hydrophobicity reinforces the activity. The receptor binding subsites of Phe(3) and Phe(4) of endomorphin-2 were found to exhibit different structural requirements. The results suggest that [Trp(3)]endomorphin-2 (native endomorphin-1) and endomorphin-2 bind to different receptor subclasses.  相似文献   
8.
We aimed to develop prognostic biomarkers for synovial sarcoma employing a proteomic approach. We examined the proteomic profile of synovial sarcoma using two-dimensional difference gel electrophoresis (2D-DIGE). We identified 20 protein spots whose intensity was statistically different (p<0.01) between a group of eight patients who were alive and continuously disease-free for over five years and a group of five patients who died of the disease within two years post diagnosis. Mass spectrometric protein identification demonstrated that these 20 spots corresponded to 17 distinct gene products. Three of the 20 spots corresponded to secernin-1 and had higher intensity in the good prognosis group. The prognostic performance of secernin-1 was further examined immunohistochemically in 45 synovial sarcoma cases. The 5-year survival rate was 77.6% and 21.8% for patients with secernin-1 positive and negative primary tumors respectively (p=0.0015). The metastasis-free survival was significantly higher in the patient group with high secernin-1 expression compared to that with low expression (p=0.0012). Uni- and multivariate analyses revealed that secernin-1 expression was a powerful prognostic factor compared to other clinico-pathological parameters examined. These results indicate that secernin-1 may be used as a biomarker to predict the overall and metastasis-free survival in synovial sarcoma patients.  相似文献   
9.
10.
Distinct apoptotic response of the type I/type II cells against Fas-ligand stimulation is considered to arise from the difference in dominant signaling pathways involved. In the type I cells, apoptotic signaling predominantly takes place via the direct activation of caspase-3 by activated caspase-8 (D channel) while mitochondrial pathway (M channel) plays a major role in the type II cells. To elucidate the selection mechanism of dominant pathway, we carried out systematic model analysis of the Fas signaling-induced apoptosis network. An increase in the expression level of caspase-8 induced a switch of dominant pathway from M- to D-channel (M–D transition), showing a phenotypic change from type II to type I cells. With the aid of sensitivity analysis and kinetic considerations, we succeeded in constructing a minimal network model relevant for the M–D transition, which revealed that mechanistic origin of the transition lies in the competition between the activated forms of caspase-8 and caspase-9 for their common substrate caspase-3. The pathway dominance was found to be primarily controlled by the balance between the activation rate of caspase-8 and the initial level of caspase-9. In the full network model, we showed that differential formation ability of the death-inducing signaling complex (DISC) can also induce M–D transition, in accordance with the experimental observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号