首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   4篇
  11篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
HIV-specific CTL play a central role in immune control of HIV. The basis for understanding the success or failure of this immune response requires identification of the specific epitopes targeted by CTL. However, in populations most severely affected by the global epidemic, this fundamental knowledge is hindered by the lack of characterization of many of the HLA class I alleles highly prevalent in such populations. Overall, the peptide-binding motif has been determined for a small minority (9%) of HLA class I alleles, with a strong bias toward those alleles prevalent in Caucasoid populations. These studies therefore set out to define, in a South African Zulu/Xhosa population at the epicenter of the epidemic, the epitopes presented by alleles highly prevalent, but for which the peptide-binding motif had not been characterized. Using a method of motif inference, epitopes presented by four such alleles prevalent in the Zulu/Xhosa population of Durban, South Africa, namely, B*3910, B*4201, B*8101, and Cw*1801, are described. Importantly, this approach may additionally facilitate optimization of epitopes in certain instances where conflicting reports in the literature exist regarding the peptide-binding motif, such as for HLA-A*2902, also highly prevalent in southern African populations. These data indicate that the previously anomalous position of HLA-A*2902 among HLA-A alleles, outside any recognized HLA-A supertype, is artifactual, and the true position of the A*2902 motif overlaps those of the A1 and A24 supertypes.  相似文献   
2.
HLA diversity is seen as a major challenge to CTL vaccines against HIV. One current approach focuses on "promiscuous" epitopes, presented by multiple HLA alleles from within the same HLA supertype. However, the effectiveness of such supertype vaccines depends upon the functional equivalence of CTL targeting a particular epitope, irrespective of the restricting HLA. In this study, we describe the promiscuous HIV-specific CTL epitopes presented by alleles within the B7 supertype. Substantial differences were observed in the ability of CTL to select for escape mutation when targeting the same epitope but restricted by different HLA. This observation was common to all six promiscuous B7 epitopes identified. Moreover, with one exception, there were no significant differences in the frequency, magnitude, or immunodominance of the CTL responses restricted by different HLA alleles to explain these discrepancies. This suggests that the unique peptide/MHC complexes generated by even closely related HLA induce CTL responses that are qualitatively different. This hypothesis is supported by additional differences observed between CTL targeting identical epitopes but restricted by different HLA: first, the occurrence of distinct, HLA-specific escape mutation; second, the recruitment of distinct TCR repertoires by particular peptide/MHC complexes; and, third, significant differences in the functional avidity of CTL. Taken together, these data indicate that significant functional differences exist between CTL targeting identical epitopes but restricted by different, albeit closely related HLA. These findings are of relevance to vaccine approaches that seek to exploit HLA supertypes to overcome the problem of HLA diversity.  相似文献   
3.
The observed association between HLA-B*13 and control of human immunodeficiency virus type 1 (HIV-1) infection has been linked to the number of Gag-specific HLA-B*13-restricted cytotoxic T-cell (CTL) responses identified. To date, the Gag escape mutations described that result in an in vitro fitness cost to the virus have been located within structural protein p24 only. Here we investigated the hypothesis that CTL escape mutations within other regions of HIV Gag may also reduce viral fitness and contribute to immune control. We analyzed an HLA-B*13-restricted CTL response toward an epitope in p1 Gag, RQANFLGKI429-437 (RI9), where amino acid variation at Gag residues 436 and 437 is associated with HLA-B*13 expression. In this work, we assessed the impact of amino acid substitutions at these positions on CTL recognition and on HIV-1 fitness. We demonstrated that substitutions I437L and I437M largely abrogate CTL recognition and reduce viral fitness while variants K436R and I437V have only a marginal effect on recognition and fitness. Examination of the patterns of protein synthesis indicated that the loss of fitness in the I437L and I437M mutants is associated with the accumulation of unprocessed Gag precursors. A significant reduction in ribosomal frameshifting efficiency was observed with I437M, suggesting that this mechanism contributes to the observed reduced fitness of this virus. These studies illustrate the apparent trade-off available to the virus between evasion of CTL recognition in p1 Gag and the functional consequences for viral fitness.  相似文献   
4.
To better understand relationships between CD8+ T-cell specificity and the immune control of human immunodeficiency virus type 1 (HIV-1), we analyzed the role of HLA-B*13, an allele associated with low viremia, in a cohort of 578 C clade-infected individuals in Durban, South Africa. Six novel B*13-restricted cytotoxic T lymphocyte epitopes were defined from analyses of 37 B*13-positive subjects, including three Gag epitopes. These B*13-restricted epitopes contribute to a broad Gag-specific CD8+ response that is associated with the control of viremia. These data are consistent with data from studies of other HLA-class I alleles associated with HIV control that have shown that the targeting of multiple Gag epitopes is associated with relative suppression of viremia.  相似文献   
5.
Much uncertainty still exists over what T-cell responses need to be induced by an effective human immunodeficiency virus (HIV) vaccine. Previous studies have hypothesized that the effective CD8+ T-cell responses are those driving the selection of escape mutations that reduce viral fitness and therefore revert posttransmission. In this study, we adopted a novel approach to define better the role of reverting escape mutations in immune control of HIV infection. This analysis of sequences from 710 study subjects with chronic C-clade HIV type 1 infection demonstrates the importance of mutations that impose a fitness cost in the control of viremia. Consistent with previous studies, the viral set points associated with each HLA-B allele are strongly correlated with the number of Gag-specific polymorphisms associated with the relevant HLA-B allele (r = −0.56, P = 0.0034). The viral set points associated with each HLA-C allele were also strongly correlated with the number of Pol-specific polymorphisms associated with the relevant HLA-C allele (r = −0.67, P = 0.0047). However, critically, both these correlations were dependent solely on the polymorphisms identified as reverting. Therefore, despite the inevitable evolution of viral escape, viremia can be controlled through the selection of mutations that are detrimental to viral fitness. The significance of these results is in highlighting the rationale for an HIV vaccine that can induce these broad responses.  相似文献   
6.
The potential importance of HLA-C-restricted CD8+ cytotoxic T lymphocytes (CTL) in HIV infection remains undetermined. We studied the dominant HLA-Cw*03-restricted CTL response to YVDRFFKTL296-304 (YL9), within the conserved major homology region (MHR) of the Gag protein, in 80 HLA-Cw*03-positive individuals with chronic HIV infection to better define the efficacy of the YL9 HLA-C-restricted response. The HLA-Cw*03 allele is strongly associated with HIV sequence changes from Thr-303 to Val, Ile, or Ala at position 8 within the YL9 epitope (P = 1.62 × 10−10). In vitro studies revealed that introduction of the changes T303I and T303A into the YL9 epitope both significantly reduced CTL recognition and substantially reduced the viral replicative capacity. However, subsequent selection of the Val-303 variant, via intracodon variation from Ile-303 (I303V) or Ala-303 (A303V), restored both viral fitness and CTL recognition, as supported by our in vivo data. These results illustrate that HLA-C-restricted CTL responses are capable of driving viral immune escape within Gag, but in contrast to what was previously described for HLA-B-restricted Gag escape mutants, the common Cw*03-Gag-303V variant selected resulted in no detectable benefit to the host.Human leukocyte antigen (HLA) class I is the most polymorphic region of the human genome. HLA class I genes are found at the A, B, and C loci of chromosome 6 and have been shown to play an important role in control of infections by intracellular pathogens (3). Of these three loci, HLA-B has had many more unique molecules identified than has HLA-A or -C (http://www.anthonynolan.org.uk/HIG/index.html). This locus variability is likely to reflect functional differences among HLA-B alleles and disease progression (20). In the context of HIV infection, several studies have demonstrated that HLA-B alleles have the greatest impact on HIV-1 replication control (7, 22). The reason why particular HLA-B, and not HLA-A or -C, alleles have been associated with improved outcome in HIV is unknown but may be explained by the numbers and regions of viral proteomes presented in the context of HLA-B molecules (19, 23, 46).Regardless of the importance of HLA-B-restricted responses in HIV control, the roles of the HLA-A and -C class I alleles have not been fully investigated. A genomewide analysis investigating single-nucleotide polymorphisms (SNP) has associated both the presence of certain HLA-B alleles and a dimorphism upstream of the HLA-C gene (−35C/T) as two of the strongest predictors of the plasma viral load in HIV infection (14). In addition, the −35 SNP has recently been associated with levels of HLA-C expression and may indicate a new role for HLA-C alleles in HIV-1 control (40).One reason that has been postulated to explain the lack of HLA-C association with immune pressure is the lower expression of HLA-C on the cell surface (18, 36, 37). However, HLA-C, unlike HLA-A and HLA-B, is not downregulated by the Nef protein, and this factor, therefore, may explain the lower expression level (9).Analyses of large numbers of HIV sequences have identified associations between particular HLA-C polymorphisms in the HIV pol gene and the set point viral load (27). These polymorphisms were within or in close proximity to defined HLA-C-restricted epitopes, suggesting that HLA-C-restricted responses could be driving HIV evolution (22, 27). Confirmation that all HLA-C-restricted epitopes are not fundamentally ineffective was recently provided by a study of an HLA-Cw*01-restricted epitope targeted to p15 Gag, which was found to drive selection of a 3-amino-acid insertion in a HIV-infected patient (6). Additionally, in vitro studies have demonstrated antiviral activities of HLA-C-restricted cytotoxic T lymphocytes (CTL) clones against HIV comparable to other HLA-B-restricted responses (2). In spite of all these data, the contribution of HLA-C responses to HIV control is still unknown.Our study was undertaken to address the role of an HLA-Cw*0303/0304-restricted response to YVDRFFKTL296-304 (YL9) in HIV infection. This response was of particular interest due to its dominance and because it targets a highly conserved region of the Gag protein among different retroviruses, namely, the major homology region (MHR). In the study cohort of 778 individuals with chronic HIV infection, 80 were found to carry Cw*0303/0304. Gag viral sequences were obtained from HLA-Cw*0303/0304 subjects and used to identify and define HIV immune escape driven by the YL9-especific responses. We then studied the impacts of these mutations on viral recognition by CD8+ T cells and on virus replicative capacity (RC).  相似文献   
7.
8.
The relationship between the function of human immunodeficiency virus (HIV)-specific CD8 T-cell responses and viral load has not been defined. In this study, we used a panel of major histocompatibility complex class I tetramers to examine responses to frequently targeted CD8 T-cell epitopes in a large cohort of antiretroviral-therapy-na?ve HIV type 1 clade C virus-infected persons in KwaZulu Natal, South Africa. In terms of effector functions of proliferation, cytokine production, and degranulation, only proliferation showed a significant correlation with viral load. This robust inverse relationship provides an important functional correlate of viral control relevant to both vaccine design and evaluation.  相似文献   
9.
Selection of T-cell vaccine antigens for chronic persistent viral infections has been largely empirical. To define the relationship, at the population level, between the specificity of the cellular immune response and viral control for a relevant human pathogen, we performed a comprehensive analysis of the 160 dominant CD8(+) T-cell responses in 578 untreated HIV-infected individuals from KwaZulu-Natal, South Africa. Of the HIV proteins targeted, only Gag-specific responses were associated with lowering viremia. Env-specific and Accessory/Regulatory protein-specific responses were associated with higher viremia. Increasing breadth of Gag-specific responses was associated with decreasing viremia and increasing Env breadth with increasing viremia. Association of the specific CD8(+) T-cell response with low viremia was independent of HLA type and unrelated to epitope sequence conservation. These population-based data, suggesting the existence of both effective immune responses and responses lacking demonstrable biological impact in chronic HIV infection, are of relevance to HIV vaccine design and evaluation.  相似文献   
10.
Mutational escape by human immunodeficiency virus (HIV) from cytotoxic T-lymphocyte (CTL) recognition is a major challenge for vaccine design. However, recent studies suggest that CTL escape may carry a sufficient cost to viral replicative capacity to facilitate subsequent immune control of a now attenuated virus. In order to examine how limitations can be imposed on viral escape, the epitope TSTLQEQIGW (TW10 [Gag residues 240 to 249]), presented by two HLA alleles associated with effective control of HIV, HLA-B*57 and -B*5801, was investigated. The in vitro experiments described here demonstrate that the dominant TW10 escape mutation, T242N, reduces viral replicative capacity. Structural analysis reveals that T242 plays a critical role in defining the start point and in stabilizing helix 6 within p24 Gag, ensuring that escape occurs at a significant cost. A very similar role is played by Thr-180, which is also an escape residue, but within a second p24 Gag epitope associated with immune control. Analysis of HIV type 1 gag in 206 B*57/5801-positive subjects reveals three principle alternative TW10-associated variants, and each is strongly linked to concomitant additional variants within p24 Gag, suggesting that functional constraints operate against their occurrence alone. The extreme conservation of p24 Gag and the predictable nature of escape variation resulting from these tight functional constraints indicate that p24 Gag may be a critical immunogen in vaccine design and suggest novel vaccination strategies to limit viral escape options from such epitopes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号