首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   4篇
  40篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1989年   1篇
排序方式: 共有40条查询结果,搜索用时 0 毫秒
1.
Seraspenide, a synthetic tetrapeptide, inhibits cell cycle entry of normal hematopoietic stem cells. In mice it protects hemopoiesis against the damage caused by cytarabine, cyclophosphamide and carboplatin. Seraspenide has been given to 53 cancer patients undergoing monochemotherapy with cytarabine and ifosfamide in a double-blind cross-over randomized study. A significant protection of peripheral blood cells has been observed. Seraspenide has been devoided of toxicity.  相似文献   
2.
Mechanical properties are investigated in Desmoncus orthacanthos and D. polyacanthos from French Guiana, South America. Differences in size and axis stiffness are related to different trellis requirements and habitats. The leaf sheath surrounds the stem, increasing stiffness of young self-supporting stages and apical parts of older climbing plants. Senescence of the leaf sheath reduces stiffness of older climbing axes of both species. Its eventual loss in D. orthacanthos facilitates deformation into coils and loops when plants slip from their supports following senescence of leaves bearing attachment organs. In smaller climbing axes of D. polyacanthos, the senescent leaf sheath remains attached and axes rarely form loops and coils below attachment. An increase in stiff mechanical properties toward the base of both species is radically different from that of many dicotyledonous lianas. Besides the presence of attachment organs, stem mechanical properties of Desmoncus are similar to those of erect though not fully self-supporting stems of Bactris major, a sympatric species of the sister group genus to Desmoncus. The climbing habit in Desmoncus may have evolved via (1) heterochronic processes including early elongation of internodes relative to increase in stem diameter (reduction of the establishment phase) and (2) increased persistence of leaf sheaths.  相似文献   
3.
Climbing plants have fascinated botanists since the pioneering works of Darwin and his contemporaries in the 19th century. Diverse plants have evolved different ways of climbing and a wide range of attachment devices and stem biomechanics to cope with the particular physical demands of life as a climber. We investigated the biomechanics of attachment in a range of climbing palms, including true rattans from Southeast Asia and the genus Desmoncus from South America. We found that hook strength and orientation is coordinated with rachis geometry and rigidity. These findings support the notion of a ratchet-type attachment mechanism and partly explain why these spiny plants are so catchy and efficient at attaching to supports.Key words: climbing palms, biomechanics, geometry, rigidity, strength, hooks, cirrus, flagellum  相似文献   
4.
Effect of hyaluronan on MMP expression and activation   总被引:1,自引:0,他引:1  
  相似文献   
5.
Isnard, Richard, Philippe Lechat, Hanna Kalotka, HafidaChikr, Serge Fitoussi, Joseph Salloum, Jean-Louis Golmard, Daniel Thomas, and Michel Komajda. Muscular blood flow response to submaximal leg exercise in normal subjects and in patients with heartfailure. J. Appl. Physiol. 81(6):2571-2579, 1996.Blood flow to working skeletal muscle is usuallyreduced during exercise in patients with congestive heart failure. Anintrinsic impairment of skeletal muscle vasodilatory capacity has beensuspected as a mechanism of this muscle underperfusion during maximalexercise, but its role during submaximal exercise remains unclear.Therefore, we studied by transcutaneous Doppler ultrasonography thearterial blood flow in the common femoral artery at rest and during asubmaximal bicycle exercise in 12 normal subjects and in 30 patientswith heart failure. Leg blood flow was lower in patientsthan in control subjects at rest [0.29 ± 0.14 (SD) vs. 0.45 ± 0.14 l/min, P < 0.01], at absolute powers and at the same relative power (2.17 ± 1.06 vs. 4.39 ± 1.4 l/min, P < 0.001). Because mean arterial pressure was maintained, leg vascularresistance was higher in patients than in control subjects at rest (407 ± 187 vs. 247 ± 71 mmHg · l1 · min,P < 0.01) and at thesame relative power (73 ± 49 vs. 31 ± 13 mmHg · l1 · min,P < 0.01) but not at absolutepowers. Although the magnitude of increase in leg blood flow correctedfor power was similar in both groups (31 ± 10 vs. 34 ± 10 ml · min1 · W1),the magnitude of decrease of leg vascular resistance corrected forpower was higher in patients than in control subjects (5.9 ± 3.3 vs. 1.9 ± 0.94 mmHg · l1 · min · W1,P < 0.001). These results suggestthat the ability of skeletal muscle vascular resistance to decrease isnot impaired and that intrinsic vascular abnormalities do not limitvasodilator response to submaximal exercise in patients with heartfailure.

  相似文献   
6.
Human epidermal keratinocytes were cultured until sub-confluence in low Ca2+ (0.15 mM) serum-free synthetic MCDB 153 medium. Raising the Ca2+ concentration to 1.15 mM caused an increase in envelope competence as well as plasma membrane associated transglutaminase (TGm) activity. This increase was not observed when the high Ca2+ medium contained retinoic acid. Immunofluorescence studies as well as immunoblotting with the TGm-specific monoclonal antibody B.C1 revealed that retinoic acid inhibits expression of TGm. Isolation and in vitro translation of mRNA with subsequent immunoprecipitation showed that retinoic acid inhibits TGm expression at the pretranslational level.  相似文献   
7.
8.
We have tried to elucidate the origin of phytochemical variation in trees by studying concomitantly the chemical and microsatellite variations in Santalum austrocaledonicum. Eight natural populations were sampled in the New-Caledonian archipelago, a total of 157 individuals being analyzed. The main components, as revealed by gas chromatography (GC), were alpha- and beta-santalol (as in other sandalwood species), although the level of (Z)-lanceol was particularly high. Most of the chemical variation was observed within populations (83.7%). With microsatellites, the variation between populations was more pronounced (32% of the total variation). Although the chemical variation between populations was small, we investigated the effects of genetic drift and migration by comparing the chemical- and molecular-differentiation patterns. The poor congruence between neighbor-joining trees, confirmed by the non-significant Mantel test between the molecular and chemical distance matrices (R=0.26, P=0.12), showed that genetic drift and migration are not the main evolutionary forces acting on chemical differentiation between populations. We could not find any effect of soil and rainfall conditions neither. Although the impact of drift and migration cannot be discounted in rationalizing between-population differentiation, the low variation among populations could result from a stabilizing selection caused by the same phytopathogen charge across the natural range.  相似文献   
9.

Background

The D-mannose binding lectin ArtinM is known to recruit neutrophils, to degranulate mast cells and may have potential therapeutic applications. However, the effect of ArtinM on mast cell recruitment has not been investigated.

Methodology

Male Wistar rats were injected i.p. with ArtinM or ConA (control). The ability of the lectin to degranulate peritoneal and mesenteric mast cells was examined. Recruitment of mast cells to the peritoneal cavity and mesentery after ArtinM injection was examined with or without depletion of peritoneal mast cells by distilled water.

Results

ArtinM degranulated both peritoneal and mesentery mast cells in vitro. Three days after i.p. injection of the lectin there were reduced numbers of mast cells in the peritoneal lavage, while at 7 days post injection of ArtinM, the number of peritoneal mast cells was close to control values. Since immature mast cells are recruited from the bone marrow, the effect of the lectin on bone marrow mast cells was examined. Injection of ArtinM resulted in an increased number of mast cells in the bone marrow. To determine if degranulation of mast cells in the peritoneal cavity was required for the increase in bone marrow mast cells, the peritoneal cavity was depleted of mast cells with ultrapure water. Exposure to ArtinM increased the number of mast cells in the bone marrow of rats depleted of peritoneal mast cells.

Conclusions

The ArtinM induced recruitment of mast cells from the bone marrow to the peritoneal cavity may partially explain the therapeutic actions of ArtinM.  相似文献   
10.
Mechanical architectures of a wide range of climbing plants are reviewed from a wide phylogenetic range and evolutionary contingencies. They include an herbaceous lycopod (Lycopodiaceae) - a woody tropical liana (Apocynaceae), temperate climbers, herbs and shrubs (Ranunculacae), and two representative climbing palms (Arecoideae, Calamoideae). Trends in mechanical properties during development are reviewed and interpreted via changes in anatomical development of the stem and type of connection to host supports. The results indicate that there are some biomechanical features common to diverse climbing plants including (1) phases of relatively rigid stem growth where the climbing stem has to span between supports and (2) a mechanism to achieve greater compliancy towards the base or at points where the slender climbing stem is at risk from excessive mechanical stress. Evolutionary contingencies such as basal plesiomorphic constraint, complexification, simplification and developmental loss can drastically influence ways in which different plants have evolved different biomechanical climbing architectures. Two key developmental features controlling the biomechanics of the climbing stem are (1) the presence/absence of secondary growth and (2) the number, complexity and coordination of development of primary or secondary tissues with varying mechanical properties. Recent research has suggested that evolution of specialized climbing architectures can canalize subsequent evolution of alternative growth forms. The results suggest that the origin and type of climbing architecture can be heavily influenced by ancestral growth forms and architectures. Despite the extremely complex patterns of plant growth form evolution involving escapes to and from more specialized or simpler bauplans, selective pressure towards non-self-supporting growth forms is a remarkably persistent and iterative feature of growth form evolution in land plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号