首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
2.
We document high rates of triploidy in aspen (Populus tremuloides) across the western USA (up to 69% of genets), and ask whether the incidence of triploidy across the species range corresponds with latitude, glacial history (as has been documented in other species), climate, or regional variance in clone size. Using a combination of microsatellite genotyping, flow cytometry, and cytology, we demonstrate that triploidy is highest in unglaciated, drought-prone regions of North America, where the largest clone sizes have been reported for this species. While we cannot completely rule out a low incidence of undetected aneuploidy, tetraploidy or duplicated loci, our evidence suggests that these phenomena are unlikely to be significant contributors to our observed patterns. We suggest that the distribution of triploid aspen is due to a positive synergy between triploidy and ecological factors driving clonality. Although triploids are expected to have low fertility, they are hypothesized to be an evolutionary link to sexual tetraploidy. Thus, interactions between clonality and polyploidy may be a broadly important component of geographic speciation patterns in perennial plants. Further, cytotypes are expected to show physiological and structural differences which may influence susceptibility to ecological factors such as drought, and we suggest that cytotype may be a significant and previously overlooked factor in recent patterns of high aspen mortality in the southwestern portion of the species range. Finally, triploidy should be carefully considered as a source of variance in genomic and ecological studies of aspen, particularly in western U.S. landscapes.  相似文献   
3.
We used structural genomic resources for Sorghum bicolor (L.) Moench to target and develop multiple molecular cytogenetic probes that would provide extensive coverage for a specific chromosome of sorghum. Bacterial artificial chromosome (BAC) clones containing molecular markers mapped across sorghum linkage group A were labeled as probes for fluorescence in situ hybridization (FISH). Signals from single-, dual-, and multiprobe BAC-FISH to spreads of mitotic chromosomes and pachytene bivalents were associated with the largest sorghum chromosome, which bears the nucleolus organizing region (NOR). The order of individual BAC-FISH loci along the chromosome was fully concordant to that of marker loci along the linkage map. In addition, the order of several tightly linked molecular markers was clarified by FISH analysis. The FISH results indicate that markers from the linkage map positions 0.0-81.8 cM reside in the short arm of chromosome 1 whereas markers from 81.8-242.9 cM are located in the long arm of chromosome 1. The centromere and NOR were located in a large heterochromatic region that spans approximately 60% of chromosome 1. In contrast, this region represents only 0.7% of the total genetic map distance of this chromosome. Variation in recombination frequency among euchromatic chromosomal regions also was apparent. The integrated data underscore the value of cytological data, because minor errors and uncertainties in linkage maps can involve huge physical regions. The successful development of multiprobe FISH cocktails suggests that it is feasible to develop chromosome-specific "paints" from genomic resources rather than flow sorting or microdissection and that when applied to pachytene chromatin, such cocktails provide an especially powerful framework for mapping. Such a molecular cytogenetic infrastructure would be inherently cross-linked with other genomic tools and thereby establish a cytogenomics system with extensive utility in development and application of genomic resources, cloning, transgene localization, development of plant "chromonomics," germplasm introgression, and marker-assisted breeding. In combination with previously reported work, the results indicate that a sorghum cytogenomics system would be partially applicable to other gramineous genera.  相似文献   
4.
The tropane alkaloid (TA) scopolamine is suggested to protect Brugmansia suaveolens (Solanaceae) against herbivorous insects. To test this prediction in a natural environment, scopolamine was induced by methyl jasmonate (MJ) in potted plants which were left 10?days in the field. MJ-treated plants increased their scopolamine concentration in leaves and herbivory decreased. These findings suggest a cause?Ceffect relationship. However, experiments in laboratory showed that scopolamine affect differently the performance of the specialist larvae of the ithomiine butterfly Placidina euryanassa (C. Felder & R. Felder) and the generalist fall armyworm Spodoptera frugiperda (J. E. Smith): the specialist that sequester this TA from B. suaveolens leaves was not negatively affected, but the generalist was. Therefore, scopolamine probably acts only against insects that are not adapted to TAs. Other compounds that are MJ elicited may also play a role in plant resistance against herbivory by generalist and specialist insects, and deserve future investigations.  相似文献   
5.
Nine small artificial dams located in different climatic regions of Kenya were studied. The local communities use the stored water for various purposes, such as irrigation, domestic use, watering of livestock and cage fish farming. Such intense use is commonly accompanied by eutrophication, including fast growth of cyanobacteria, which at times produce cyanotoxins threatening human and animal life. We studied the pelagic community, analysed abiotic variables and identified microcystins by means of high performance liquid chromatography and ELISA kits at monthly intervals over a period of one year. Mass spectrometry (MALDI-TOF MS) was used to identify structural variants of microcystins by their protonated masses (M + H). Three dams contained microcystins, with the highly toxic Microcystin-LR being identified as the most prominent substance. Cell content of the toxin varied from 7.2 to 686.7 fg cell?1. Basic limnological variables that indicate the probability of toxin presence were also recorded. Non-parametric Mann–Whitney U-test revealed significant differences in soluble reactive phosphorous, nitrate-N, water depth, total hardness and post-Nauplii stages sampled between toxin-producing and non-toxin-producing dams. Although most of the samples did not contain high amounts of cyanobacteria, the cyanotoxin-problem was evident, suggesting the need for regular cyanotoxin monitoring programs.  相似文献   
6.
Thirty five females and 15 males of New Zealand White mature rabbits about 6 months of age, were assigned to 1–5 dietary treatments (7 does+3 bucks for each): uncontaminated control diet, naturally aflatoxin contaminated diet without or with 1,2 and 3% bentonite. Rabbit fed with the aflatoxin-diet had a decreased (P<0.01 or 0.05) physical semen characteristics of bucks and a reproductive performance traits of does. The values of conception rate (%), gestation length (days), litter size (n) and litter weights (g) at birth and viability (%) of litters of doe rabbits, fed with the aflatoxin-diet, recorded, respectively: 64.5; 31.0; 4.4; 275.0 and 57.1 versus 85.6; 30.3; 7.9; 508.0; and 100 for those fed with the uncontaminated diet. Addition of bentonite to the aflatoxin contaminated diet improved in general the physical semen characteristics of buck and reproductive performance traits of doe rabbits. The results of the study demonstrate that adding 1% of Egyptian raw bentonite to the naturally aflatoxin contaminated rabbit diets can provide an effective, cheap and safe practical technique for preventing the aflatoxicosis in mature rabbits.  相似文献   
7.
The most widely cultivated species of cotton,Gossypium hirsutum, is a disomic tetraploid (2n=4x=52). It has been proposed previously that extant A- and D-genome species are most closely related to the diploid progenitors of the tetraploid. We used fluorescent in situ hybridization (FISH) to determine the distribution of 5S and 18S-28S rDNA loci in the A-genome speciesG. herbaceum andG. arboreum, the D-genome speciesG. raimondii andG. thurberi, and the AD tetraploidG. hirsutum. High signal-to-noise, single-label FISH was used to enumerate rDNA loci, and simultaneous, dual-label FISH was used to determine the syntenic relationships of 5S rDNA loci relative to 18S–28S rDNA loci. These techniques provided greater sensitivity than our previous methods and permitted detection of six newG. hirsutum 18S–28S rDNA loci, bringing the total number of observed loci to 11. Differences in the intensity of the hybrizization signal at these loci allowed us to designate them as major, intermediate, or minor 18–28S loci. Using genomic painting with labeled A-genome DNA, five 18S–28S loci were localized to theG. hirsutum A-subgenome and six to the D-subgenome. Four of the 11 18S–28S rDNA loci inG. hirsutum could not be accounted for in its presumed diploid progenitors, as both A-genome species has three loci and both D-genome species had four.G. hirsutum has two 5S rDNA loci, both of which are syntenic to major 18S–28S rDNA loci. All four of the diploid genomes wer examined contained a single 5S locus. InG. herbaceum (A1) andG. thurberi (D1), the 5S locus is syntenic to a major 18S–28S locus, but inG. arboreum (A2) andG. raimondii (D5), the proposed D-genome progenitor ofG. hirsutum, the 5S loci are syntenic tominor and intermediate 18S–28S loci, respecitively. The multiplicity, variation in size and site number, and lack of additivity between the tetraploid species and its putative diploid ancestors indicate that the behavior of rDNA loci in cotton is nondogmatic, and considerably more complex and dynamic than previously envisioned. The relative variability of 18S–28S rDNA loci versus 5S rDNA loci suggests that the behavior of tandem repearts can differ widely. Edited by: R. Appels  相似文献   
8.

Background

Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood.

Methodology/Principal Findings

Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA.

Conclusions/Significance

Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.  相似文献   
9.
10.
Homologies of the adductor mandibulae muscles in eight families of Tetraodontiformes were hypothesized from the branching patterns of ramus mandibularis trigeminus. Insertions of the muscles to the upper or lower jaw were weak indicators of homology, migrations of the sites occurring frequently in A1, A2, A2, and A3. In monacanthids, tetraodontids, and diodontids, A1 tended to be split into numerous subsections, whereas in aracanids and ostraciids, A3 was highly developed, comprising three or four subsections. In tetraodontids, A2 was found to be a composite of A1 subsection and A2. The methods of and limits to applying nerve branching patterns to muscle homology are discussed. A new naming system that reflects both muscle homologies and insertions is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号