首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  2022年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2003年   1篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有26条查询结果,搜索用时 109 毫秒
1.
Selective induction of apoptosis in tumor cells is important for treating patients with cancer. Because oxidative stress plays an important role in the process of apoptosis, we studied the effect of alpha-tocopheryl succinate (VES) on the fate of cultured human promyelocytic leukemia cells (HL-60). The presence of fairly low concentrations of VES inhibited the growth and DNA synthesis of HL-60 cells, and also induced their apoptosis via a mechanism that was inhibited by z-VAD-fluoromethylketone (z-VAD-fmk), an inhibitor of pan-caspases. VES activated various types of caspases, including caspase-3, 6, 8, and 9, but not caspase-1. VES triggered the reaction leading to the cleavage of Bid, a member of the death agonist Bcl-2 family, and released cytochrome c (Cyt.c) from the mitochondria into the cytosol by a z-VAD-fmk-inhibitable mechanism. VES transiently increased the intracellular calcium level [Ca2+]i and stimulated the release of Cyt.c in the presence of inorganic phosphate (Pi). However, high concentrations of VES (approximately 100 microM) hardly induced swelling of isolated mitochondria but depolarized the mitochondrial membrane potential by a cyclosporin A (CsA)-insensitive mechanism. These results indicate that VES-induced apoptosis of HL-60 cells might be caused by activation of the caspase cascade coupled with modulation of mitochondrial membrane function.  相似文献   
2.
Watanabe  Atsuyuki  So  Matsuo  Mitaka  Hayato  Ishisaka  Yoshiko  Takagi  Hisato  Inokuchi  Ryota  Iwagami  Masao  Kuno  Toshiki 《Mycopathologia》2022,187(2-3):271-289

The recent increase of COVID-19-associated mucormycosis (CAM) has been commanding global attention. However, basic epidemiologic characteristics have not firmly been established. In this systematic review and meta-analysis, we sought to determine the clinical manifestations, potential risk factors, and outcomes of CAM. Observational studies reporting CAM were searched with PubMed and EMBASE databases in January 2022. We collected data on comorbidities and treatment for COVID-19, and performed a one-group meta-analysis on the frequency of orbital exenteration procedure and mortality of CAM using a random-effect model. Fifty-one observational studies, including a total of 2,312 patients with proven CAM, were identified. Among the 51 studies, 37 were conducted in India, 8 in Egypt, and 6 in other countries. The most common comorbidity was diabetes mellitus (82%). While 57% required oxygenation, 77% received systemic corticosteroids. Among CAM, 97% were rhino-orbital-cerebral (ROCM), and 2.7% were pulmonary mucormycosis. Usual presentations were headache (54%), periorbital swelling/pain (53%), facial swelling/pain (43%), ophthalmoplegia (42%), proptosis (41%), and nasal discharge/congestion (36%). Regarding the outcomes, orbital exenteration was performed in 17% (95% CI: 12–21%, I2?=?83%) of the COVID-19-associated ROCM patients. The mortality of CAM was 29% (95% CI; 22–36%, I2?=?92%). In conclusion, this systematic review and meta-analysis indicated that the most prevalent type of CAM was ROCM, and most CAM patients had diabetes mellitus and received systemic glucocorticoids. Clinicians in the endemic areas should have a high index of suspicion for this invasive fungal complication of COVID-19 when a diabetic patient who received high-dose systemic glucocorticoids developed rhino-orbital symptoms.

  相似文献   
3.
Quercetin is ubiquitously distributed in plant foods. This antioxidative polyphenol is mostly converted to conjugated metabolites in the body. Parkinson disease (PD) has been suggested to be related to oxidative stress derived from abnormal dopaminergic activity. We evaluated if dietary quercetin contributes to the antioxidant network in the central nervous system from the viewpoint of PD prevention. A neurotoxin, 6-hydroxydopamine (6-OHDA), was used as a model of PD. 6-OHDA-induced H?O? production and cell death in mouse neuroblastoma, Neuro-2a. Quercetin aglycone suppressed 6-OHDA-induced H?O? production and cell death, although aglycone itself reduced cell viability at higher concentration. Quercetin 3-O-β-D-glucuronide (Q3GA), which is an antioxidative metabolite of dietary quercetin, was little incorporated into the cell resulting in neither suppression of 6-OHDA-induced cell death nor reduction of cell viability. Q3GA was found to be deconjugated to quercetin by microglial MG-6 cells. These results indicate that quercetin metabolites should be converted to their aglycone to exert preventive effect on damage to neuronal cells.  相似文献   
4.
Selective induction of apoptosis in tumor cells is important for treating patients with cancer. Because oxidative stress plays an important role in the process of apoptosis, we studied the effect of α-tocopheryl succinate (VES) on the fate of cultured human promyelocytic leukemia cells (HL-60). The presence of fairly low concentrations of VES inhibited the growth and DNA synthesis of HL-60 cells, and also induced their apoptosis via a mechanism that was inhibited by z-VAD-fluoromethylketone (z-VAD-fmk), an inhibitor of pan-caspases. VES activated various types of caspases, including caspase-3, 6, 8, and 9, but not caspase-1. VES triggered the reaction leading to the cleavage of Bid, a member of the death agonist Bcl-2 family, and released cytochrome c (Cyt.c) from the mitochondria into the cytosol by a z-VAD-fmk-inhibitable mechanism. VES transiently increased the intracellular calcium level [Ca2+]i and stimulated the release of Cyt.c in the presence of inorganic phosphate (Pi). However, high concentrations of VES (~100 μM) hardly induced swelling of isolated mitochondria but depolarized the mitochondrial membrane potential by a cyclosporin A (CsA)-insensitive mechanism. These results indicate that VES-induced apoptosis of HL-60 cells might be caused by activation of the caspase cascade coupled with modulation of mitochondrial membrane function.  相似文献   
5.
Flavonoid-rich diets are expected to decrease the risk of cardiovascular diseases. The localization and target sites of flavonoids underlying the protective mechanism in vivo have not been fully investigated because the methods for detection of flavonoids have been limited to chemical analysis such as high-performance liquid chromatography. To further understand the actions of flavonoids in vivo, we developed a novel methodology that immunochemically evaluates flavonoids using specific antibodies. Quercetin-3-glucuronide (Q3GA), a major metabolite in human plasma, was coupled with keyhole limpet hemocyanin. Alternatively, the sugar moiety of quercetin-3-glucoside (Q3G) was succinylated and then coupled with a carrier protein. Using these two immunogens, we finally obtained two monoclonal antibodies, mAb14A2 and mAb11G6, from the immunogen using Q3GA and Q3G, respectively. Competitive enzyme-linked immunosorbent assay showed the unique difference in the specificity between the two similar antibodies: mAb14A2 recognized several quercetin-3-glycosides including Q3G and rutin but mAb11G6 was highly specific to the Q3G structure. The macrophage-derived foam cells in human atherosclerotic lesions were significantly stained with mAb14A2 but scarcely with mAb11G6. These results showed that the anti-flavonoid glycoside antibodies are useful tools for evaluating their localization in tissues and that the specificities strongly depend on the immunogen design for synthesizing the hapten-protein conjugates.  相似文献   
6.
Serotonin (5-hydroxytryptamine) is a putative substrate for myeloperoxidase, which may convert it into the reactive quinone tryptamine-4,5-dione (TD). In this study, we found that the viability of human SH-SY5Y neuroblastoma cells treated with 25?μM TD was increased to approximately 117%. On the other hand, the cell viability was significantly decreased by exposure to TD (150–200?μM), with an increase in intracellular reactive oxygen species (ROS). Interestingly, pre-treatment of SH-SY5Y cells with 100?μM TD prevented cell death and suppressed intracellular ROS generation evoked by the addition of hydrogen peroxide (H2O2). Expression of the phase-II antioxidant enzyme NAD(P)H: quinone oxidoreductase 1 and haem oxygenase 1 were upregulated by TD at a concentration of 50–100?μM. Nuclear factor erythroid 2-related factor 2 (Nrf2), the regulator of these enzyme, was translocated from the cytosol to the nucleus by 100?μM TD. In summary, moderate concentrations of TD may increase the self-defence capacity of neuronal cells against oxidative stress.  相似文献   
7.

Background

Diacylglycerol kinase (DGK) is an enzyme that phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). DGKβ is widely distributed in the central nervous system, such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. Recent studies reported that the splice variant at the COOH-terminal of DGKβ was related to bipolar disorder, but its detailed mechanism is still unknown.

Methodology/Principal Findings

In the present study, we performed behavioral tests using DGKβ knockout (KO) mice to investigate the effects of DGKβ deficits on psychomotor behavior. DGKβ KO mice exhibited some behavioral abnormalities, such as hyperactivity, reduced anxiety, and reduced depression. Additionally, hyperactivity and reduced anxiety were attenuated by the administration of the mood stabilizer, lithium, but not haloperidol, diazepam, or imipramine. Moreover, DGKβ KO mice showed impairment in Akt-glycogen synthesis kinase (GSK) 3β signaling and cortical spine formation.

Conclusions/Significance

These findings suggest that DGKβ KO mice exhibit lithium-sensitive behavioral abnormalities that are, at least in part, due to the impairment of Akt-GSK3β signaling and cortical spine formation.  相似文献   
8.
Our objective is to clarify the role of reactive oxygen species (ROS) in the atrophying tail of anuran tadpoles (tail apoptosis). Changes in catalase, superoxide dismutase (SOD) and caspase activity, genomic DNA, and nitric oxide (NO) generation were investigated biochemically using Rana japonica tadpole tails undergoing regression during thyroid hormone enhancement. DNA fragmentation and ladder formation with concomitant shortening of tadpole tail were induced by DL-thyroxine (T4) in culture medium. Catalase activity was also decreased by T4 treatment. T4 was also found to increase NO synthase (NOS) activity in cultured tadpole tail with concomitant increase in the concentration of NO2- plus NO3- (NOx) in the culture medium. Additional treatment with N-monomethyl-L-arginine (NMMA), a potent inhibitor of NOS, suppressed the enhancing effects of T4 on tail shortening and catalase activity reduction. It was also found that treatment with isosorbide dinitrate (ISDN), a NO generating drug, alone also had an enhancing effect on tail shortening and catalase activity reduction similar to that seen with T4. Both NO and an NO donor (ISDN) strongly suppressed catalase activity. Kinetic analysis revealed that catalase activity decreased and caspase-3-like activity increased during normal tadpole tail atrophy (apoptosis). These results suggested that T4 enhances NO generation, thereby strongly inhibiting catalase activity, resulting in an increase in hydrogen peroxide, and that the oxidative stress elicited by excess hydrogen peroxide might activate cysteine-dependent aspartate-directed protease-3 (caspase-3-like protease), which is thought to cause DNA fragmentation, leading to apoptosis.  相似文献   
9.
Accumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures. In this study, we found that zerumbone, a bioactive sesquiterpene, binds to numerous proteins with little selectivity. Similar to heat-denatured proteins, zerumbone-modified proteins were recognized by heat shock protein 90, a constitutive molecular chaperone, leading to heat shock factor 1-dependent heat shock protein induction in hepa1c1c7 mouse hepatoma cells. Furthermore, oral administration of this phytochemical up-regulated heat shock protein expressions in the livers of Sprague-Dawley rats. Interestingly, pretreatment with zerumbone conferred a thermoresistant phenotype to hepa1c1c7 cells as well as to the nematode Caenorhabditis elegans. It is also important to note that several phytochemicals with higher hydrophobicity or electrophilicity, including phenethyl isothiocyanate and curcumin, markedly induced heat shock proteins, whereas most of the tested nutrients did not. These results suggest that non-specific protein modifications by xenobiotic phytochemicals cause mild proteostress, thereby inducing heat shock response and leading to potentiation of protein quality control systems. We considered these bioactivities to be xenohormesis, an adaptation mechanism against xenobiotic chemical stresses. Heat shock response by phytochemicals may be a fundamental mechanism underlying their various bioactivities.  相似文献   
10.
Dietary flavonoids, such as quercetin, have long been recognized to protect blood vessels from atherogenic inflammation by yet unknown mechanisms. We have previously discovered the specific localization of quercetin-3-O-glucuronide (Q3GA), a phase II metabolite of quercetin, in macrophage cells in the human atherosclerotic lesions, but the biological significance is poorly understood. We have now demonstrated the molecular basis of the interaction between quercetin glucuronides and macrophages, leading to deconjugation of the glucuronides into the active aglycone. In vitro experiments showed that Q3GA was bound to the cell surface proteins of macrophages through anion binding and was readily deconjugated into the aglycone. It is of interest that the macrophage-mediated deconjugation of Q3GA was significantly enhanced upon inflammatory activation by lipopolysaccharide (LPS). Zymography and immunoblotting analysis revealed that β-glucuronidase is the major enzyme responsible for the deglucuronidation, whereas the secretion rate was not affected after LPS treatment. We found that extracellular acidification, which is required for the activity of β-glucuronidase, was significantly induced upon LPS treatment and was due to the increased lactate secretion associated with mitochondrial dysfunction. In addition, the β-glucuronidase secretion, which is triggered by intracellular calcium ions, was also induced by mitochondria dysfunction characterized using antimycin-A (a mitochondrial inhibitor) and siRNA-knockdown of Atg7 (an essential gene for autophagy). The deconjugated aglycone, quercetin, acts as an anti-inflammatory agent in the stimulated macrophages by inhibiting the c-Jun N-terminal kinase activation, whereas Q3GA acts only in the presence of extracellular β-glucuronidase activity. Finally, we demonstrated the deconjugation of quercetin glucuronides including the sulfoglucuronides in vivo in the spleen of mice challenged with LPS. These results showed that mitochondrial dysfunction plays a crucial role in the deconjugation of quercetin glucuronides in macrophages. Collectively, this study contributes to clarifying the mechanism responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号