首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   2篇
  2021年   8篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1993年   1篇
  1992年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
排序方式: 共有79条查询结果,搜索用时 375 毫秒
1.
The pannexin family of channel-forming proteins is composed of 3 distinct but related members called Panx1, Panx2, and Panx3. Pannexins have been implicated in many physiological processes as well as pathological conditions, primarily through their function as ATP release channels. However, it is currently unclear if all pannexins are subject to similar or different post-translational modifications as most studies have focused primarily on Panx1. Using in vitro biochemical assays performed on ectopically expressed pannexins in HEK-293T cells, we confirmed that all 3 pannexins are N-glycosylated to different degrees, but they are not modified by sialylation or O-linked glycosylation in a manner that changes their apparent molecular weight. Using cell-free caspase assays, we also discovered that similar to Panx1, the C-terminus of Panx2 is a substrate for caspase cleavage. Panx3, on the other hand, is not subject to caspase digestion but an in vitro biotin switch assay revealed that it was S-nitrosylated by nitric oxide donors. Taken together, our findings uncover novel and diverse pannexin post-translational modifications suggesting that they may be differentially regulated for distinct or overlapping cellular and physiological functions.  相似文献   
2.
We have raised an anti-idiotypic antibody against the cell surface IgM of the murine BCL1 tumor cells. This antiserum reacts exclusively with the IgM expressed on the tumor cells and detects a unique population of cells in the spleen and blood of the tumor-bearing mice. When these cells are stimulated in vitro with LPS, they secrete an IgM bearing the same idiotype as the cell surface Ig. These results are discussed in terms of a model for the immunotherapy of a chronic lymphocytic leukemia-like syndrome in mice.  相似文献   
3.
The lipids of isolated Krebs perfused rabbit kidneys and hearts were labelled with [14C]arachidonic acid. Subsequent hormonal stimulation (e.g. bradykinin, ATP) of the pre-labelled tissue resulted in dose-dependent release of [14C]prostaglandins; little or no release of the precursor [14C]arachidonic acid was observed. When fatty acid-free bovine serum albumin was added to the perfusion medium as a trap for fatty acids substantial release of [14C]arachidonic acid was detected following hormonal stimulation. The release of [14C]arachidonic acid was dose-dependent and greater than 3 fold that of [14C]prostaglandin release. Indomethacin by inhibiting the cyclo-oxygenase, completely inhibited release of [14C]prostaglandins and only slightly inhibited release of [14C]arachidonic acid. These results demonstrate that in both rabbit kidney and heart much more substrate is released by hormonal stimulation than is converted to prostaglandins. This suggests that either the deacylation reaction is not tightly coupled to the prostaglandin synthetase system or that there are two deacylation mechanisms, one which is coupled to prostaglandin synthesis while the other is non-specific. It has previously been shown that prostaglandin release due to hormones such as bradykinin is transient despite continued presence of the hormone (tachyphylaxis). By utilizing albumin to trap released fatty acid, it was found that hormone-stimulated release of arachidonic acid is also transient. This directly demonstrates that tachyphylaxis occurs at a step prior to the cyclo-oxygenase.  相似文献   
4.
The expression of c-myb mRNA is differentially regulated in murine B lymphoid tumors such that B cell lymphomas and plasmacytomas contain significantly less c-myb mRNA than pre-B cell lymphomas. To examine the low level of c-myb mRNA expression in the murine B cell lymphoma cell line BCL1, nonessential amino acid starvation was used to block these cells in a G1 state. When BCL1 cells were released from this block, a 7- to 10-fold increase in c-myb mRNA was detected in late G1 and S phase cells relative to that detected in exponentially growing BCL1 cells. This increase was not inhibited by aphidicolin. To determine whether cell cycle regulation of c-myb mRNA expression occurred during exponential growth in both murine pre-B cell lymphoma and B cell lymphoma cell lines, elutriation was used to separate exponentially growing cell populations. An increase in c-myb mRNA expression was seen in late G1 and S phase fractions from B cell lymphoma cell lines. In contrast, c-myb mRNA levels remained constant in elutriation fractions isolated from pre-B cell lymphoma cell lines. Expression of c-myb mRNA was not detected in exponentially growing or in Go serum-stimulated murine fibroblasts. These results indicate that constitutive vs cell cycle regulation of c-myb mRNA expression is related to the state of differentiation in murine B lymphoid tumors and suggest that a switch in regulation may occur during normal B cell development.  相似文献   
5.
Plasmonics - This study shows development of highly sensitive and stable localized surface plasmon resonance (LSPR)-active U-bent glass and polymeric optical fiber (GOF and POF) sensor probes by a...  相似文献   
6.
Suppression of macroautophagy, due to mutations or through processes linked to aging, results in the accumulation of cytoplasmic substrates that are normally eliminated by the pathway. This is a significant problem in long-lived cells like neurons, where pathway defects can result in the accumulation of aggregates containing ubiquitinated proteins. The p62/Ref(2)P family of proteins is involved in the autophagic clearance of cytoplasmic protein bodies or sequestosomes. These unique structures are closely associated with protein inclusions containing ubiquitin as well as key components of the autophagy pathway. In this study we show that detergent fractionation followed by western blot analysis of insoluble ubiquitinated proteins (IUP), mammalian p62 and its Drosophila homologue, Ref(2)P can be used to quantitatively assess the activity level of aggregate clearance (aggrephagy) in complex tissues. Using this technique we show that genetic or age-dependent changes that modify the long-term enhancement or suppression of aggrephagy can be identified. Moreover, using the Drosophila model system this method can be used to establish autophagy-dependent protein clearance profiles that are occurring under a wide range of physiological conditions including developmental, fasting and altered metabolic pathways. This technique can also be used to examine proteopathies that are associated with human disorders such as frontotemporal dementia, Huntington and Alzheimer disease. Our findings indicate that measuring IUP profiles together with an assessment of p62/Ref(2)P proteins can be used as a screening or diagnostic tool to characterize genetic and age-dependent factors that alter the long-term function of autophagy and the clearance of protein aggregates occurring within complex tissues and cells.  相似文献   
7.
S-Nitrosylation is a post-translational modification on cysteine(s) that can regulate protein function, and pannexin 1 (Panx1) channels are present in the vasculature, a tissue rich in nitric oxide (NO) species. Therefore, we investigated whether Panx1 can be S-nitrosylated and whether this modification can affect channel activity. Using the biotin switch assay, we found that application of the NO donor S-nitrosoglutathione (GSNO) or diethylammonium (Z)-1–1(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA NONOate) to human embryonic kidney (HEK) 293T cells expressing wild type (WT) Panx1 and mouse aortic endothelial cells induced Panx1 S-nitrosylation. Functionally, GSNO and DEA NONOate attenuated Panx1 currents; consistent with a role for S-nitrosylation, current inhibition was reversed by the reducing agent dithiothreitol and unaffected by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a blocker of guanylate cyclase activity. In addition, ATP release was significantly inhibited by treatment with both NO donors. To identify which cysteine residue(s) was S-nitrosylated, we made single cysteine-to-alanine substitutions in Panx1 (Panx1C40A, Panx1C346A, and Panx1C426A). Mutation of these single cysteines did not prevent Panx1 S-nitrosylation; however, mutation of either Cys-40 or Cys-346 prevented Panx1 current inhibition and ATP release by GSNO. This observation suggested that multiple cysteines may be S-nitrosylated to regulate Panx1 channel function. Indeed, we found that mutation of both Cys-40 and Cys-346 (Panx1C40A/C346A) prevented Panx1 S-nitrosylation by GSNO as well as the GSNO-mediated inhibition of Panx1 current and ATP release. Taken together, these results indicate that S-nitrosylation of Panx1 at Cys-40 and Cys-346 inhibits Panx1 channel currents and ATP release.  相似文献   
8.
BALB/c IL-2-deficient (IL-2-KO) mice develop systemic autoimmunity, dying within 3 to 5 wk from complications of autoimmune hemolytic anemia. Disease in these mice is Th1 mediated, and IFN-γ production is required for early autoimmunity. In this study, we show that dendritic cells (DCs) are required for optimal IFN-γ production by T cells in the IL-2-KO mouse. Disease is marked by DC accumulation, activation, and elevated production of Th1-inducing cytokines. IL-2-KO DCs induce heightened proliferation and cytokine production by naive T cells compared with wild-type DCs. The depletion of either conventional or plasmacytoid DCs significantly prolongs the survival of IL-2-KO mice, demonstrating that DCs contribute to the progression of autoimmunity. Elimination of Th1-inducing cytokine signals (type 1 IFN and IL-12) reduces RBC-specific Ab production and augments survival, indicating that cytokines derived from both plasmacytoid DCs and conventional DCs contribute to disease severity. DC activation likely precedes T cell activation because DCs are functionally activated even in an environment lacking overt T cell activation. These data indicate that both conventional and plasmacytoid DCs are critical regulators in the development of this systemic Ab-mediated autoimmune disease, in large part through the production of IL-12 and type 1 IFNs.  相似文献   
9.
Although much physiology in resistance vessels has been attributed to the cytoplasmic connection between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), little is known of the protein expression between the two cell types. In an attempt to identify the proteins between ECs and VSMCs, mouse cremaster arterioles were stained with phalloidin-Alexa 594 and viewed on a confocal microscope that resolved "actin bridges" within the internal elastic lamina between ECs and VSMCs. To determine the incidence of protein, the pixel intensity from the antibodies on actin bridges were compared with the pixel intensity from antibodies within ECs or VSMCs. N-cadherin, desmin, connexin (Cx)40, and Cx43 and phosphorylated Cx43 at serine-368 were identified on actin bridges, but NG2, CD31, and Cx45 were not evident. Cx37 expression was more variable than the other connexins examined. Using this method on rat mesentery, we confirm the previously published predominance of Cx37 and Cx40 at the myoendothelial junction that was determined using electron microscopy. We conclude that this new method represents an important screening mechanism in which to rapidly test for protein expression between ECs and VSMCs and possibly a first-step in quantifying protein expression at the myoendothelial junction.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号