首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2015年   1篇
  2011年   1篇
  2010年   2篇
  2006年   2篇
  2005年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有9条查询结果,搜索用时 171 毫秒
1
1.
We examine the performance of Hebbian-like attractor neural networks, recalling stored memory patterns from their distorted versions. Searching for an activation (firing-rate) function that maximizes the performance in sparsely connected low-activity networks, we show that the optimal activation function is a threshold-sigmoid of the neuron's input field. This function is shown to be in close correspondence with the dependence of the firing rate of cortical neurons on their integrated input current, as described by neurophysiological recordings and conduction-based models. It also accounts for the decreasing-density shape of firing rates that has been reported in the literature. Received:9 December 1994 / Accepted in revised form: 9 January 1996  相似文献   
2.
When facing the challenge of developing an individual that best fits its environment, nature demonstrates an interesting combination of two fundamentally different adaptive mechanisms: genetic evolution and phenotypic plasticity. Following numerous computational models, it has become the accepted wisdom that lifetime acclimation (e.g. via learning) smooths the fitness landscape and consequently accelerates evolution. However, analytical studies, focusing on the effect of phenotypic plasticity on evolution in simple unimodal landscapes, have often found that learning hinders the evolutionary process rather than accelerating it. Here, we provide a general framework for studying the effect of plasticity on evolution in multipeaked landscapes and introduce a rigorous mathematical analysis of these dynamics. We show that the convergence rate of the evolutionary process in a given arbitrary one-dimensional fitness landscape is dominated by the largest descent (drawdown) in the landscape and provide numerical evidence to support an analogous dominance also in multidimensional landscapes. We consider several schemes of phenotypic plasticity and examine their effect on the landscape drawdown, identifying the conditions under which phenotypic plasticity is advantageous. The lack of such a drawdown in unimodal landscapes vs. its dominance in multipeaked landscapes accounts for the seemingly contradictory findings of previous studies.  相似文献   
3.
The claim that genetic properties of neurons significantly influence their synaptic network structure is a common notion in neuroscience. The nematode Caenorhabditis elegans provides an exciting opportunity to approach this question in a large-scale quantitative manner. Its synaptic connectivity network has been identified, and, combined with cellular studies, we currently have characteristic connectivity and gene expression signatures for most of its neurons. By using two complementary analysis assays we show that the expression signature of a neuron carries significant information about its synaptic connectivity signature, and identify a list of putative genes predicting neural connectivity. The current study rigorously quantifies the relation between gene expression and synaptic connectivity signatures in the C. elegans nervous system and identifies subsets of neurons where this relation is highly marked. The results presented and the genes identified provide a promising starting point for further, more detailed computational and experimental investigations.  相似文献   
4.
Secretory vesicles express a periodic multimodal size distribution. The successive modes are integral multiples of the smallest mode (G1). The vesicle content ranges from macromolecules (proteins, mucopolysaccharides and hormones) to low molecular weight molecules (neurotransmitters). A steady-state model has been developed to emulate a mechanism for the introduction of vesicles of monomer size, which grow by a unit addition mechanism, G1+GnGn+1 which, at a later stage are eliminated from the system. We describe a model of growth and elimination transition rates which adequately illustrates the distributions of vesicle population size at steady-state and upon elimination. Consequently, prediction of normal behavior and pathological perturbations is feasible. Careful analysis of spontaneous secretion, as compared to short burst-induced secretion, suggests that the basic character-code for reliable communication should be within a range of only 8-10 vesicles’ burst which may serve as a yes/no message.  相似文献   
5.
We describe the first large scale analysis of gene translation that is based on a model that takes into account the physical and dynamical nature of this process. The Ribosomal Flow Model (RFM) predicts fundamental features of the translation process, including translation rates, protein abundance levels, ribosomal densities and the relation between all these variables, better than alternative ('non-physical') approaches. In addition, we show that the RFM can be used for accurate inference of various other quantities including genes' initiation rates and translation costs. These quantities could not be inferred by previous predictors. We find that increasing the number of available ribosomes (or equivalently the initiation rate) increases the genomic translation rate and the mean ribosome density only up to a certain point, beyond which both saturate. Strikingly, assuming that the translation system is tuned to work at the pre-saturation point maximizes the predictive power of the model with respect to experimental data. This result suggests that in all organisms that were analyzed (from bacteria to Human), the global initiation rate is optimized to attain the pre-saturation point. The fact that similar results were not observed for heterologous genes indicates that this feature is under selection. Remarkably, the gap between the performance of the RFM and alternative predictors is strikingly large in the case of heterologous genes, testifying to the model's promising biotechnological value in predicting the abundance of heterologous proteins before expressing them in the desired host.  相似文献   
6.
Maturation of the humoral immune response as an optimization problem.   总被引:2,自引:0,他引:2  
Efficient immune response often depends on the production of high affinity antibodies. We show analytically that the optimal strategy for a fast production of high affinity antibodies is to utilize a step-function mutation rate, i.e. a minimal mutation rate in early stages of the immune response, followed by a discontinuous switch to the maximal possible rate when the proliferating population of B-cells exceeds a threshold value. Our results are in accordance with the biological observations concerning the time of onset of the hypermutation process, and with the mutation rate during the later stages of the primary immune response. Indeed the hypermutation process plays a crucial role in responding to a prevailing pathogen at each round of immune response, and not only for coping with future infections. Moreover, as the effect of hypermutations is shown to be crucially dependent on the number of proliferating B-cells, its onset is not expected to depend on an external signal, but rather to be related to the clone's age. This suggests that the onset is host species specific, rather than pathogen specific. Another implication of the present results is that activation of hypermutations before the B-cell population has reached the critical size may impede the efficiency of the response.  相似文献   
7.
8.
Perturbation studies, in which functional performance is measured after deletion, mutation, or lesion of elements of a biological system, have been traditionally employed in many fields in biology. The vast majority of these studies have been qualitative and have employed single perturbations, often resulting in little phenotypic effect. Recently, newly emerging experimental techniques have allowed researchers to carry out concomitant multi-perturbations and to uncover the causal functional contributions of system elements. This study presents a rigorous and quantitative multi-perturbation analysis of gene knockout and neuronal ablation experiments. In both cases, a quantification of the elements' contributions, and new insights and predictions, are provided. Multi-perturbation analysis has a potentially wide range of applications and is gradually becoming an essential tool in biology.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号