首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  1999年   2篇
  1997年   1篇
  1994年   1篇
  1989年   2篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1973年   2篇
  1969年   1篇
排序方式: 共有21条查询结果,搜索用时 0 毫秒
1.
2.
(1) 2,3-Diphosphoglyceric acid (2,3-DPG) is present in the erythrocytes (RBC) of the 68-day loggerhead turtle embryo and 44-day green sea turtle embryo at levels of 7.4 and 5.5 μmoles/ml of RBC, representing the major organic phosphate during the latter period of embryonic development. (2) Inositol pentaphosphate (IPP) is absent in the red blood cells of the embryos of both the loggerhead and green sea turtle. (3) Near equimolar amounts of 2,3-DPG and IPP are present in the erythrocytes of the adult loggerhead and green sea turtle. The total concentration of these two organic phosphates is approximately 0.75 μmoles/ml of RBC in the adult of both species. (4) There is a switch from embryonic to adult hemoglobin during development of these two species of turtles; the two embryonic bands have identical electrophoretic mobilities, whereas the two adult bands migrate differently on cellulose acetate at pH 8.6. (5) The whole blood oxygen affinity of the adult loggerhead and green sea turtle is 60.3 and 32.6 Torr, respectively. (6) The stripped adult hemoglobins in these two species of turtles show no change in oxygen affinity upon addition of 2,3-DPG, ATP, or IPP. (7) It therefore appears unlikely that whole blood oxygen affinity is controlled by organic phosphate modulation of hemoglobin function in these species of turtles.  相似文献   
3.
The uptake of myo-inositol was determined in a reticulocyte-enriched fraction prepared from chicken blood and compared with uptake in mature erythrocytes. While reticulocytes accumulated inositol at levels more than threefold that of the plasma concentration, erythrocyte levels were only slightly higher than that of the plasma concentration. The rate of uptake in reticulocytes was approximately 66 mumol/ml rbc/h compared to 5 mumol/ml rbc/h in mature erythrocytes when measured at an inositol medium concentration of 250 microM. The kinetic analysis of inositol influx by reticulocytes reveals a two component system: saturable and nonsaturable. The saturable component, which has a Km for inositol of approximately 222 microM, is Na-dependent. This Na-dependent saturable component, which presumably reflects active transport of inositol, accounts for 30-35% of the transport process. The saturable component is completely inhibited by amiloride but to a lesser extent by ouabain and bumetanide. Moreover, in the course of reticulocyte maturation, the saturable component is lost concomitantly with the completion of the synthesis of myo-inositol pentakisphosphate and the drastic decrease in the membrane permeability to inositol. In addition, phloretin and cytochalasin B, which bind to hexose carriers and inhibit hexose sugar transport, also inhibited inositol transport. The uptake of inositol was not affected by excesses of 3-O-methylglucose (100 mM) or by physiological concentrations of D-glucose. Thus, the transport mechanism of myo-inositol appears distinct from that of D-glucose.  相似文献   
4.
5.
Uptake ofmyo-inositol by astrocytes in hypertonic medium (440 mosm/kg H2O) was increased near 3-fold after incubation for 24 hours, which continued for 72 hours, as compared with the uptake by cells cultured in isotonic medium (38 nmoles/mg protein).myo-Inositol uptake by astrocytes cultured in hypotonic medium (180 mosm/kg H2O) for periods up to 72 hours was reduced by 74% to 8 to 10 nmoles/mg protein. Astrocytes incubated in either hypotonic or hypertonic medium for 24 hours and then placed in isotonic medium reversed the initial down- or up-regulation of uptake. Activation of chronic RVD and RVI correlates with regulation ofmyo-inositol uptake. A 30 to 40 mosm/kg H2O deviation from physiological osmolality can influencemyo-inositol homeostasis. The intracellular content ofmyo-inositol in astrocytes in isotonic medium was 25.6 ± 1.3 g/mg protein (28 mM). This level ofmyo-inositol is sufficient for this compound to function as an osmoregulator in primary astrocytes and it is likely to contribute to the maintenance of brain volume.  相似文献   
6.
After tryptic digestion of intact Staphylococcus aureus the residual portion of protein A that was still bound to the cell wall was cleaved off with lysostaphin. From the two digests Fc-binding fragments were isolated and the following characteristics observed. (a) There are four Fc-binding, highly homologous regions, each consisting of 58--62 amino acid residues. (b) These regions are consecutively arranged from the N-terminal part of the protein. (c) The residual C-terminal part, approximately 150-residues long, differs to a great extent with respect to primary and secondary structures from the four active regions. Furthermore, it is suggested that the protein is bound to the bacterial cell wall structure through this C-terminal part.  相似文献   
7.
The ability of the chicken erythrocyte to accumulate 2,3-bisphosphoglycerate (2,3-P2-glycerate) and its effect upon the oxygen affinity (P50) of the cell suspensions have been determined. Erythrocytes from chick embryos, which contain 4-6 mM 2,3-P2-glycerate, and from chickens at various ages, which contain 3-4 mM inositol pentakisphosphate but no 2,3-P2-glycerate, were incubated with inosine, pyruvate, and inorganic phosphate. Red blood cells from 20-day chick embryos incubated in Krebs-Ringer, pH 7.45, containing 20 mM inosine and 20 mM pyruvate had an increase in 2,3-P2-glycerate from 4.3 to 11.9 mM after 4 h. Importantly, as 2,3-P2-glycerate concentration increased there was a corresponding increase in P50 of the cell suspension. Further, erythrocytes from 9- and 11-week, and 7-, 14-, 24-, and 28-month-old chickens when incubated similarly with inosine and pyruvate accumulated 2,3-P2-glycerate with corresponding increases in P50 of the cell suspensions. The ability of the red cell to accumulate this compound under the incubation conditions used apparently decreases with age of the bird (e.g., 11.9 mM in the 20-day embryo to 1.1 mM in the 28-month-old chicken after 4 h incubation). Despite the presence of significant amounts of inositol-P5, the accumulation of 2,3-P2-glycerate markedly decreases oxygen affinity of the cell suspensions. The delta P50/mumol increase in 2,3-P2-glycerate in the red cells of the 20-day chick embryo after 4 h incubation is 1.5 Torr; conversely, the delta P50/mumol decrease in 2,3-P2-glycerate in the red cells of the 17-day embryo after 6 h incubation in the presence of sodium bisulfite is 2.8 Torr. The demonstrated ability of the chicken erythrocyte to accumulate 2,3-P2-glycerate in response to certain substrates suggests that regulation of concentration of this compound could contribute significantly to regulation of blood oxygen affinity in birds.  相似文献   
8.
Isaacks  R. E.  Bender  A. S.  Kim  C. Y.  Norenberg  M. D. 《Neurochemical research》1997,22(12):1461-1469
myo-Inositol uptake measured in primary astrocyte cultures was saturable in the presence of Na+ with a Km of 13–18 M and a Vmax of 9.4 nmoles/mg protein/hour in myo-inositol-fed cells, indicating a high affinity transport system. In myo-inositol-deprived cells, Km was about 53 M with a Vmax of 13.2 nmoles/mg protein/hour. Decreasing osmolality decreased the Vmax to about 1.9 nmoles/mg protein/hour whereas increasing osmolality increased Vmax about 5-fold, while Kms were essentially unchanged in myo-inositol fed cells. In cells deprived of myo-inositol, Vmax decreased in hypotonic medium and increased in hypertonic medium almost 10-fold, but with more than a doubling of the Km regardless of the osmolality. Glucose (25 mM) inhibited myo-inositol uptake 51% whereas the other hexoses used inhibited uptake much less. Our findings indicate that myo-inositol uptake in astrocytes occurs through an efficient carrier-mediated Na+-dependent co-transport system that is different from that of glucose and its kinetic properties are affected by myo-inositol availability and osmotic stress.  相似文献   
9.
10.
Ammonia causes astrocyte swelling which is abrogated by methionine sulfoximine (MSO). Since myo-inositol is an important osmolyte, we investigated the effects of ammonia and MSO on myo-inositol flux in cultured astrocytes for periods up to 72 hours. Uptake of myo-inositol was significantly decreased by 26.7 (P < 0.05) and 39.3 (P lt; 0.006) percent after 48 hours of exposure to 5 or 10 mM ammonia, respectively. The maximum rate of uptake was 14.0 ± 0.5 nmol/hour/mg protein which was reduced to 7.45 ± 0.27 and 7.02 ± 0.57 nmoles/hour/mg protein by 5 or 10 mM ammonia, respectively. The Kms by Michaelis-Menten equation for the control, and in the presence of 5, or 10 mM ammonia were 32.5 ± 4.52, 44.4 ± 5.82, and 39.3 ± 7.0 M, respectively. Kms by Hanes-Woolf plot for the control, 5, or 10 mM ammonia were 25, 45, and 40 M, respectively. Treatment of astrocytes with either 5 or 10 mM NH4Cl for 6 hours caused a decrease in myo-inositol content by 66% and 58%, respectively. MSO (3 mM) partially diminished the ammonia-induced inhibition of myo-inositol uptake and decreased myo-inositol content by 31% after 24 hours. Additionally, ammonia increased myo-inositol efflux briefly through the fast efflux component but had little effect on myo-inositol efflux through the slow efflux component of astrocytes exposed to ammonia for up to 72 hours. Predominantly decreased myo-inositol influx coupled with brief efflux through the fast component may represent an adaptive response to diminish the extent of ammonia-induced astrocyte swelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号