首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2021年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2005年   1篇
  2004年   4篇
  1993年   1篇
  1989年   1篇
排序方式: 共有11条查询结果,搜索用时 187 毫秒
1.
2.
The aim of this study was to evaluate whether L-Arginine (L-Arg) supplementation modifies nitric oxide (NO) system and consequently aquaporin-2 (AQP2) expression in the renal outer medulla of streptozotocin-diabetic rats at an early time point after induction of diabetes. Male Wistar rats were divided in four groups: Control, Diabetic, Diabetic treated with L-Arginine and Control treated with L-Arginine. Nitric oxide synthase (NOS) activity was estimated by [14C] L-citrulline production in homogenates of the renal outer medulla and by NADPH-diaphorase staining in renal outer medullary tubules. Western blot was used to detect the expression of AQP2 and NOS types I and III; real time PCR was used to quantify AQP2 mRNA. The expression of both NOS isoforms, NOS I and NOS III, was decreased in the renal outer medulla of diabetic rats and L-Arg failed to prevent these decreases. However, L-Arg improved NO production, NADPH-diaphorase activity in collecting ducts and other tubular structures, and NOS activity in renal homogenates from diabetic rats. AQP2 protein and mRNA were decreased in the renal outer medulla of diabetic rats and L-Arg administration prevented these decreases. These results suggest that the decreased NOS activity in collecting ducts of the renal outer medulla may cause, at least in part, the decreased expression of AQP2 in this model of diabetes and constitute additional evidence supporting a role for NO in contributing to renal water reabsorption through the modulation of AQP2 expression in this pathological condition. However, we cannot discard that another pathway different from NOS also exists that links L-Arg to AQP2 expression.  相似文献   
3.
4.
SpeedScreen is a novel, label-free, in-solution, affinity-based selection methodology for high-throughput screening (HTS) developed at Novartis Pharma. The SpeedScreen protocol comprises in-solution affinity selection, followed by size exclusion chromatography in combination with microbore-liquid-chromatography/electrospray-ionization mass spectrometry (micro-LC/ESI-MS). The authors describe the basic concept behind assay development, HTS, and data analysis with the SpeedScreen technology. Advantages and limitations of SpeedScreen compared to alternative screening technologies are discussed, and an example is given from a SpeedScreen campaign applying this innovative affinity selection concept in HTS.  相似文献   
5.
Several forms of protein kinase C with molecular masses of 74-, 77-, and 80-kDa were detected in subcellular fractions of human breast cancer MDA-MB-231 cells which express the alpha-type protein kinase C. Several lines of evidence indicated that the 74-kDa is the precursor of the 77- and 80-kDa protein kinase C forms. (i) Pulse-labeling experiments revealed that protein kinase C is synthesized on membranes as a 74-kDa protein that can be chased into the 77- and the 80-kDa protein kinase C forms. (ii) The primary translation product of protein kinase C displayed an apparent molecular size of 74-kDa as determined by in vitro translation of poly(A)+ RNA from MDA-MB-231 cells. (iii) Incubation with serine/threonine-specific protein phosphatases (potato acid phosphatase and phosphatase 1 or 2A) resulted in the complete dephosphorylation of the 77-kDa to the 74-kDa protein kinase C form. Protein kinase C appears to be synthesized in membranes as an unphosphorylated and presumably inactive 74-kDa form that is converted into the active 77- and 80-kDa protein kinase C by post-translational modification involving at least two phosphorylation steps. The first phosphorylation is probably achieved by a specific, yet unidentified, "protein kinase C kinase" since the 74-kDa protein kinase C species did not undergo autophosphorylation and was neither a substrate for the purified protein kinase C, S6 kinase, phosphorylase kinase, casein kinase II, nor for the catalytic subunit of cAMP-dependent protein kinase. Except for phosphorylase kinase and the catalytic subunit of the cAMP-dependent protein kinase, phosphorylation of the 77-kDa protein kinase C form with purified protein kinase C (autophosphorylation), S6 kinase or casein kinase II shifted the molecular mass of the 77-kDa protein kinase C to 80-kDa. Prolonged exposure of MDA-MB-231 cells to phorbol 12-myristate 13-acetate not only leads to a complete down-regulation of protein kinase C activity but also to an accumulation of 74-kDa protein kinase C due to a retarded conversion of the 74-kDa into the 77- and 80-kDa protein kinase C forms in these cells. Our data indicate that tumor promoters additionally interfere with the posttranslational processing that converts the 74-kDa protein kinase C precursor into the 77- and 80-kDa forms of the enzyme.  相似文献   
6.
Deubiquitinating enzymes (DUBs) catalyze the removal of attached ubiquitin molecules from amino groups of target proteins. The large family of DUBs plays an important role in the regulation of the intracellular homeostasis of different proteins and influences therefore key events such as cell division, apoptosis, etc. The DUB family members UCH-L3 and USP2 are believed to inhibit the degradation of various tumor-growth-promoting proteins by removing the trigger for degradation. Inhibitors of these enzymes should therefore lead to enhanced degradation of oncoproteins and may thus stop tumor growth. To develop an enzymatic assay for the search of UCH-L3 and USP2 inhibitors, C-terminally labeled ubiquitin substrates were enzymatically synthesized. We have used the ubiquitin-activating enzyme E1 and one of the ubiquitin-conjugating enzymes E2 to attach a fluorescent lysine derivative to the C terminus of ubiquitin. Since only the epsilon-NH(2) group of the lysine derivatives was free and reactive, the conjugates closely mimic the isopeptide bond between the ubiquitin and the lysine side chains of the targeted proteins. Various substrates were synthesized by this approach and characterized enzymatically with the two DUBs. The variant consisting of the fusion protein between the large N-terminal NusA tag and the ubiquitin which was modified with alpha-NH(2)-tetramethylrhodamin-lysine, was found to give the highest dynamic range in a fluorescence polarization readout. Therefore we have chosen this substrate for the development of a miniaturized, fluorescence-polarization-based high-throughput screening assay.  相似文献   
7.
A high-throughput screening methodology tailored to the discovery of ligands for known and orphan proteins is presented. With this method, labeling of neither target protein nor screened compounds is required, as the ligands are affinity selected by incubation of the protein with mixtures of compounds in aqueous binding buffer. Unbound small-molecular-weight compounds are removed from the target protein:ligand complex by rapid size-exclusion chromatography in the 96-well format. The protein fraction is analyzed subsequently by liquid chromatography-mass spectrometry for detection and identification of the bound ligand. This screening method was validated with known protein:ligand model systems and optimized for selection of high-affinity binders in an industrial screening environment. All sample handling steps and the analytics are rapid, robust, and largely automated, adopting this technology to the needs of present high-throughput screening processes. This affinity-selection technology, termed SpeedScreen, is currently an integral part of our lead discovery process.  相似文献   
8.
The beta isoform of the heat shock protein 90 (Hsp90beta) is a cellular chaperone required for the maturation of key proteins involved in growth response to extracellular factors as well as oncogenic transformation of various cell types. Compounds that inhibit the function of Hsp90beta are thus believed to have potential as novel anticancer drugs. To date, 2 fungal metabolites are known to inhibit Hsp90beta. However, insolubility and liver toxicity restrict the clinical use of these molecules. The limitation to identify novel and safe Hsp90beta inhibitors is that presently no suitable high-throughput screening assay is available. Here, the authors present the development of a homogenous assay based on 2-dimensional fluorescence intensity distribution analysis of tetramethyl-rhodamine (TAMRA)-labeled radicicol bound to Hsp90beta. Furthermore, the assay has been shown to be compatible with the confocal nanoscreening platform Mark II from Evotec-Technologies and can therefore be used for miniaturized high-throughput screening. The applied detection technology provides critical information about the nature of biomolecular interaction at the thermodynamic equilibrium, such as affinity constants and stoichiometric parameters of the binding. The assay is used to identify small molecular weight compounds displacing TAMRA-radicicol. Such compounds are believed to be important molecules in the discovery of novel anticancer drugs.  相似文献   
9.
Expression of the α-isoform of protein kinase C (α-PKC) in E. coli yielded the unphosphorylated 74 kD precursor molecule. This precursor form exhibited phospholipid- and calcium-dependent phorbol ester binding but lacked, in contrast to the phosphorylated enzyme, protein kinase activity. In addition, the precursor molecule was found to interact with both threonine and an ATP analogon, which demonstrates that phosphorylation of α-PKC is not required for binding of substrates, cofactors, or activators. These results, therefore, suggest that posttranslational phosphorylation of α-PKC is not needed for the formation of a functional enzyme-substrate complex but is necessary for the catalytic transfer of phosphate residues from ATP to protein substrates.  相似文献   
10.
Target of rapamycin is a Ser/Thr kinase that operates in two conserved multiprotein complexes, TORC1 and TORC2. Unlike TORC1, TORC2 is insensitive to rapamycin, and its functional characterization is less advanced. Previous genetic studies demonstrated that TORC2 depletion leads to loss of actin polarization and loss of endocytosis. To determine how TORC2 regulates these readouts, we engineered a yeast strain in which TORC2 can be specifically and acutely inhibited by the imidazoquinoline NVP-BHS345. Kinetic analyses following inhibition of TORC2, supported with quantitative phosphoproteomics, revealed that TORC2 regulates these readouts via distinct pathways as follows: rapidly through direct protein phosphorylation cascades and slowly through indirect changes in the tensile properties of the plasma membrane. The rapid signaling events are mediated in large part through the phospholipid flippase kinases Fpk1 and Fpk2, whereas the slow signaling pathway involves increased plasma membrane tension resulting from a gradual depletion of sphingolipids. Additional hits in our phosphoproteomic screens highlight the intricate control TORC2 exerts over diverse aspects of eukaryote cell physiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号