首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   4篇
  106篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   9篇
  2013年   6篇
  2012年   9篇
  2011年   13篇
  2010年   2篇
  2009年   7篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   8篇
  2004年   9篇
  2003年   4篇
  2002年   5篇
  1996年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
1.

Flavonoids are one of the largest classes of small molecular secondary metabolites produced in different parts of the plant. They display a wide range of pharmacological and beneficial health effects for humans, which include, among others, antioxidative activity, free radical scavenging capacity, coronary heart disease prevention and antiatherosclerotic, hepatoprotective, anti-inflammatory, and anticancer activities. Hence, flavonoids are gaining high attention from the pharmaceutical and healthcare industries. Notably, plants synthesize flavonoids in response to microbial infection, and these compounds have been found to be a potent antimicrobial agent against a wide range of pathogenic microorganisms in vitro. Antimicrobial action of flavonoids results from their various biological activities, which may not seem very specific at first. There are, however, promising antibacterial flavonoids that are able not only to selectively target bacterial cells, but also to inhibit virulence factors, as well as other forms of microbial threats, e.g. biofilm formation. Moreover, some plant flavonoids manifest ability to reverse the antibiotic resistance and enhance action of the current antibiotic drugs. Hence, the development and application of flavonoid-based drugs could be a promising approach for antibiotic-resistant infections. This review aims to improve our understanding of the biological and molecular roles of plant flavonoids, focusing mostly on their antimicrobial activities.

  相似文献   
2.
The aim of the present study was to estimate the genotoxicity of desflurane, applied as a volatile anaesthetic. The potential genotoxicity was determined by the comet assay as the extent of DNA fragmentation in human peripheral blood lymphocytes in vitro. The comet assay detects DNA strand breaks induced directly by genotoxic agents as well as DNA fragmentation due to cell death. Another anaesthetic, halothane, already proved to be a genotoxic agent, was used as a positive control. Both analysed drugs were capable of increasing DNA migration in a dose-dependent manner under experimental conditions applied. The results of the study demonstrated that the genotoxicity of desflurane was comparable with that of halothane. However, considering the pharmacodynamics of both drugs, the genotoxic activity of desflurane may be connected with a less harmful effect on the exposed patients or medical staff.  相似文献   
3.
Methotrexate (MTX) and 6-mercaptopurine (6MP) are the most commonly used drugs in the therapy of childhood acute lymphoblastic leukaemia (ALL). The main genotoxic effect of MTX resulting from inhibition of thymidylate synthase is mis-incorporation of uracil into DNA, which is considered essential for the effectiveness of the Protocol M in ALL IC BFM 2002/EURO LB 2002 regimens. In this study, we investigated the level of basal and induced DNA damage as well as the effectiveness of DNA repair in lymphocytes of children with ALL at four time-points during therapy with MTX and 6MP. To assess DNA damage and the efficacy of DNA repair we used the modified alkaline comet assay with uracil DNA glycosylase (Udg) and endonuclease III (EndoIII). In addition, we examined the induction of apoptosis in the lymphocytes of the patients during treatment. Finally, we compared the activity of base-excision repair (BER), involved in removal of both uracil and oxidized bases from DNA in lymphocytes of children with ALL and lymphocytes of healthy children. BER efficiency was estimated in an in vitro assay with cellular extracts and plasmid substrates of heteroduplex DNA with an AP-site. Our results indicate that there is a significant decrease in the efficacy of DNA repair associated with an increased level of uracil in DNA and induction of apoptosis during therapy. Moreover, it was found that the BER capacity was decreased in the lymphocytes of ALL patients in contrast to that in lymphocytes of healthy children. Thus, we suggest that an impairment of the BER pathway may play a role in the pathogenesis and therapy of childhood ALL.  相似文献   
4.
Chromosomal translocations of tyrosine kinase c-ABL gene from chromosome 9 may generate oncogenic kinases exhibiting constitutive tyrosine kinase activity. Recently, we have shown that ABL-fusion oncogenic tyrosine kinases, BCR/ABL and TEL/ABL, specific to hematopoietic malignances, induced resistance to DNA-damaging agents. To elucidate the role of DNA repair in this phenomenon we examined the capacity of murine BaF3 lymphoid cells and their TEL/ABL-transformed counterparts to repair DNA lesions caused by gamma- and UV-radiations and the anti-cancer drug, idarubicin. TEL/ABL-transformed cells displayed resistance to these DNA damaging agents as evaluated by MTT assay and the survival advantage was associated with an accelerated kinetics of DNA repair as measured by the alkaline comet assay. Deoxyribonucleosides (dNTPs) supplementation of the repair medium further stimulated DNA repair and the effect was specific to the DNA damage agent used in the experiment but only the transformed cells displayed this feature. A variety of damages induced imply the multi-pathway of DNA repair involved. We also examined the capability of BCR/ABL-fusion to modulate the repair of oxidative lesions, considered as a major side effect of various anti-cancer drugs including idarubicin and radiation. Employing the free radical scavenger alpha-phenyl-N-tert-butyl nitrone (PBN, a spin trap) and DNA repair enzymes: endonuclease III (EndoIII) that nicks DNA at sites of oxidized bases, we found that BCR/ABL-transformed cells repaired oxidative DNA lesions more effectively than control cells. Our results suggest, that oncogenic ABL-dependent stimulation of DNA repair may contribute to the cell resistance to genotoxic treatment.  相似文献   
5.
Different organs of Mesembryanthemum crystallinum exhibit differing levels of CAM (Crassulacean acid metabolism), identifiable by quantification of nocturnal malate accumulation. Shoots and also basal parts of young leaves were observed to accumulate high concentrations of malate. It was typically found in mature leaves and especially prominent in plants subjected to salt stress. Small amount of nocturnal malate accumulation was found in roots of M. crystallinum plants following age-dependent or salinity-triggered CAM. This is an indication that malate can be also stored in non-photosynthetic tissue. Measurements of catalase activity did not produce evidence of the correlation between activity of this enzyme and the level of malate accumulation in different organs of M. crystallinum although catalase activity also appeared to be dependent on the photoperiod. In all material collected at dusk catalase activity was greater than it was observed in the organs harvested at dawn.  相似文献   
6.
A moderate genotoxic activity of halothane and isoflurane applied as volatile anaesthetics has already been shown. The aim of this work was to estimate a potential genotoxicity of sevoflurane, introduced to clinical practice later than halothane and isoflurane. A genotoxic activity of all three compounds was estimated by using the comet assay in human peripheral blood lymphocytes (PBL) proliferating in vitro. We demonstrated that in contrast to the previously studied anaesthetics, sevoflurane did not induce any increase in DNA migration in the studied conditions. To estimate a genotoxic effect of a prolonged exposure to halogenated anaesthetics in vivo, PBL taken from operating room personnel (n = 29) were tested for DNA degradation and compared with those from a control non-exposed group (n = 20). No significant differences were detected between the groups. We conclude that sevoflurane does not have genotoxic properties, both in vitro and in vivo.  相似文献   
7.
Analysis of plant material is an important task in chemotaxonomical investigations, in search of plants with pharmacological activity or in standardisation of plant drugs. The choice of optimal conditions for the analysis of plant material and effect of extraction method on the yield of furanocoumarins from Pastinaca sativa fruits were examined. The following extraction methods were used in experiments: exhaustive extraction in Soxhlet apparatus, ultrasonification (USAE) at 25 and 60 degrees C, microwave-assisted solvent extraction in open and closed system (MASE) and accelerated solvent extraction (ASE). In most cases, the yield of furanocoumarins was highest by use of ASE method as well as by ultrasonification at 60 degrees C.  相似文献   
8.
Microcystin-LR (MC-LR) is a cyanobacterial heptapeptide that presents acute and chronic hazards to animal and human health. The morphological changes in mitochondria are the primary effect induced by MC-LR leading to cell death. We investigated the toxicity of cyanobacterial microcystin-containing extract (CEM) on the respiratory complex of mammalian mitochondria from Bos taurus. Cyanobacterial blooms of Microcystis aeruginosa were harvested from Sulejow Reservoir, a source of drinking water in central Poland. The concentration of microcystin-LR (MC-LR(CEM)) in CEM extract was determined by high-performance liquid chromatography (HPLC). Commercially available microcystin-LR (Sigma) was used as a standard (MC-LR(S)); both standard and CEM extract were incubated with mitochondria in different doses and time of exposure. MC-RL(CEM) at 1 nM, maximal acceptable dose of microcystin (WHO) in drinking water, provoked activation of cytochrome c oxidase complex in mitochondria. We suggest that it might be considered as a defensive signal of mitochondria against low concentration of a toxic compound. In contrast 1 iM MC-RL(CME) inhibited the activity of mitochondrial oxidase complex much stronger than the same concentration of standard MC-RL(S) (58% vs. 87% of control activity, P<0.05), and this may cause a similar effect to long-term consumption of water. In conclusion, we affirm that CEM extract is highly toxic, and mitochondria could be used as an indicator of this toxicity in vivo, especially during long-term consumption of water from reservoirs where microcystin is produced.  相似文献   
9.
Suitability of different types of pre-concentration (solid phase microextraction and sorbent trapping) and detection (flame photometric detector (FPD) and mass selective detector (MSD)) for gas chromatographic determination of sulphur-containing compounds (H2S, MeSH, EtSH, DMS, COS and CS2) in breath-gas was assessed in this study. Several factors like influence of humidity, influence of oxygen, or stability of target compounds in extraction vessels (SPME vials and sorbent tubes) were investigated. Despite poor stability of VSCs in SPME vials and matrix effects (unfavorable influence of humidity), SPME was found to be a fast and reliable enrichment method, which coupled with mass selective detector provided satisfactory LODs of target compounds at the ppt level (from 0.15 ppb for CS2 to 2.3 ppb for H2S). Application of sorbent trapping with two-bed sorbent tubes containing Tenax TA and Carboxen 1000 gave excellent LODs (0.03–0.3 ppb for 200 ml sample and MSD). Stability of investigated VSCs in sorbents was found to be very poor (30–40% losses after 2 h). FPD showed satisfactory sensitivity only when it was coupled with sorbent trapping. Breath samples were collected into Tedlar bags in a CO2-controlled manner. Humidity was removed during sampling (permeation dryer – Nafion) to avoid unfavorable water dependent effects during analysis.  相似文献   
10.
Application of the air‐puff swept source optical coherence tomography (SS‐OCT) instrument to determine the influence of viscoelasticity on the relation between overall the air‐puff force and corneal apex displacement of porcine corneas ex vivo is demonstrated. Simultaneous recording of time‐evolution of the tissue displacement and air pulse stimulus allows obtaining valuable information related in part to the mechanical properties of the cornea. A novel approach based on quantitative analysis of the corneal hysteresis of OCT data is presented. The corneal response to the air pulse is assessed for different well‐controlled intraocular pressure (IOP) levels and for the progression of cross‐linking‐induced stiffness of the cornea. Micrometer resolution, fast acquisition and noncontact character of the air‐puff SS‐OCT measurements have potential to improve the in vivo assessment of mechanical properties of the human corneas.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号