首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   3篇
  128篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   9篇
  2012年   14篇
  2011年   11篇
  2010年   7篇
  2009年   4篇
  2008年   8篇
  2007年   9篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   4篇
  1985年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
1.
Molecular and Cellular Biochemistry - Excitation–contraction coupling in normal cardiac function is performed with well balanced and coordinated functioning but with complex dynamic...  相似文献   
2.
Major histocompatibility complex (Mhc) genes are frequently used as a model for adaptive genetic diversity. Although associations between Mhc and disease resistance are frequently documented, little is known about the fitness consequences of Mhc variation in wild populations. Further, most work to date has involved testing associations between Mhc genotypes and fitness components. However, the functional diversity of the Mhc, and hence the mechanism by which selection on Mhc acts, depends on how genotypes map to the functional properties of Mhc molecules. Here, we test three hypotheses that relate Mhc diversity to fitness: (i) the maximal diversity hypothesis, (ii) the optimal diversity hypothesis and (iii) effect of specific Mhc types. We combine mark–recapture methods with analysis of long‐term breeding data to investigate the effects of Mhc class I functional diversity (Mhc supertypes) on individual fitness in a wild great tit (Parus major) population. We found that the presence of three different Mhc supertypes was associated with three different components of individual fitness: survival, annual recruitment and lifetime reproductive success (LRS). Great tits possessing Mhc supertype 3 experienced higher survival rates than those that did not, whereas individuals with Mhc supertype 6 experienced higher LRS and were more likely to recruit offspring each year. Conversely, great tits that possessed Mhc supertype 5 had reduced LRS. We found no evidence for a selective advantage of Mhc diversity, in terms of either maximal or optimal supertype diversity. Our results support the suggestion that specific Mhc types are an important determinant of individual fitness.  相似文献   
3.
The Ca(2+)-independent transient outward K(+) current (I(to)) plays an important electrophysiological role in normal and diseased hearts. However, its contribution to ventricular repolarization remains controversial because of differences in its phenotypic expression and function across species. The dog, a frequently used model of human cardiac disease, exhibits altered functional expression of I(to). To better understand the relevance of electrical remodeling in dogs to humans, we studied the phenotypic differences in ventricular I(to) of both species with electrophysiological, pharmacological, and protein-chemical techniques. Several notable distinctions were elucidated, including slower current decay, more rapid recovery from inactivation, and a depolarizing shift of steady-state inactivation in human vs. canine I(to). Whereas recovery from inactivation of human I(to) followed a monoexponential time course, canine I(to) recovered with biexponential kinetics. Pharmacological sensitivity to flecainide was markedly greater in human than canine I(to), and exposure to oxidative stress did not alter the inactivation kinetics of I(to) in either species. Western blot analysis revealed immunoreactive bands specific for Kv4.3, Kv1.4, and Kv channel-interacting protein (KChIP)2 in dog and human, but with notable differences in band sizes across species. We report for the first time major variations in phenotypic properties of human and canine ventricular I(to) despite the presence of the same subunit proteins in both species. These data suggest that differences in electrophysiological and pharmacological properties of I(to) between humans and dogs are not caused by differential expression of the K channel subunit genes thought to encode I(to), but rather may arise from differences in molecular structure and/or posttranslational modification of these subunits.  相似文献   
4.
Recently we found that electrophysiological (EP) heterogeneities between subepicardial and midmyocardial cells can form a substrate for reentrant ventricular arrhythmias. However, cell-to-cell coupling through gap junctions is expected to attenuate transmural heterogeneities between cell types spanning the ventricular wall. Because connexin43 (Cx43) is the principal ventricular gap junction protein, we hypothesized that transmural EP heterogeneities are in part produced by heterogeneous Cx43 expression across the ventricular wall. The left ventricles of eight dogs were sectioned to expose the transmural surface. To determine whether heterogeneous Cx43 expression influenced EP function, high-resolution transmural optical mapping of the arterially perfused canine wedge preparation was used to measure transmural conduction velocity (thetaTM), dV/dt(max), transmural space constant (lambdaTM), and transmural gradients of action potential duration (APD). Relative Cx43 expression, quantified by confocal immunofluorescence, was significantly lower (by 24 +/- 17%; P < 0.05) in subepicardial compared with deeper layers. Importantly, reduced subepicardial Cx43 was associated with transmural heterogeneities of EP function evidenced by selectively reduced subepicardial thetaTM (by 18 +/- 9%; P < 0.05) compared with deeper layers. In subepicardial regions, dV/dt(max) was fastest (by 19 +/- 15%) and lambdaTM was smallest (by 18.1 +/- 2%), which suggests that conduction slowing was attributable to localized uncoupling rather than reduced excitability. The maximum transmural APD gradients occurred in the same regions where Cx43 expression was lowest; this suggests that Cx43 expression patterns served to maintain APD gradients across the transmural wall. These data demonstrate that heterogeneous Cx43 expression is closely associated with functionally significant EP heterogeneities across the transmural wall. Therefore, Cx43 expression patterns can potentially contribute to arrhythmic substrates that are dependent on transmural electrophysiological heterogeneities.  相似文献   
5.
The Na-K-2Cl cotransporter (NKCC1) is one of several transporters that have been linked to hypertension, and its inhibition reduces vascular smooth muscle tone and blood pressure. NKCC1 in the rat aorta is stimulated by vasoconstrictors and inhibited by nitrovasodilators, and this is linked to the contractile state of the smooth muscle. To determine whether blood pressure also regulates NKCC1, we examined the acute effect of hypertension on NKCC1 in rats after aortic coarctation. In the hypertensive aorta (28-mmHg rise in mean blood pressure), an increase in NKCC1 activity (measured as bumetanide-sensitive (86)Rb efflux) was apparent by 16 h and reached a plateau of 62% greater than control at 48 h. In contrast, there was a slight decrease in NKCC1 activity in the hypotensive aorta (21% decrease in mean blood pressure). Measurement of NKCC1 mRNA by real-time PCR revealed a fivefold increase in the hypertensive aorta compared with the hypotensive aorta or sham aorta. The inhibition by bumetanide of isometric force response to phenylephrine was significantly greater in the hypertensive aorta than in the control aorta or hypotensive aorta. We conclude that NKCC1 in rat aortic smooth muscle is regulated by blood pressure, most likely through changes in transporter abundance. This upregulation of NKCC1 is associated with a greater contribution to force generation in the hypertensive aorta. This is the first demonstration that NKCC1 in vascular smooth muscle is regulated by blood pressure and indicates that this transporter is important in the acute response of vascular smooth muscle to hypertension.  相似文献   
6.
We identified nine individuals from three unrelated Turkish families with a unique autosomal recessive syndrome characterized by type I microtia, microdontia, and profound congenital deafness associated with a complete absence of inner ear structures (Michel aplasia). We later demonstrated three different homozygous mutations (p.S156P, p.R104X, and p.V206SfsX117) in the fibroblast growth factor 3 (FGF3) gene in affected members of these families, cosegregating with the autosomal recessive transmission as a completely penetrant phenotype. These findings demonstrate the involvement of FGF3 mutations in a human malformation syndrome for the first time and contribute to our understanding of the role this gene plays in embryonic development. Of particular interest is that the development of the inner ear is completely disturbed at a very early stage--or the otic vesicle is not induced at all--in all of the affected individuals who carried two mutant FGF3 alleles.  相似文献   
7.
The functional role of IGFBP5 in breast cancer is complicated. Experimental and bioinformatics studies have shown that IGFBP5 is targeted by miR-140-5p and miR-193b, although this has not yet been proven in clinical samples. The aim of this study was to evaluate the expression of miR-140-5p and miR-193b in breast cancer and adjacent normal tissue and assess its correlation with IGFBP5 and the clinicopathological characteristics of the tumors. IGFBP5 protein expression was analyzed immunohistochemically and IGFBP5, miR-140 and miR-193b mRNA expression levels were analyzed with real-time RT-PCR. Tumor tissue had higher miR-140-5p expression than adjacent normal tissue (p = 0.015). Samples with no immunohistochemical staining for IGFBP5 showed increased miR-140-5p expression (p = 0.009). miR-140-5p expression was elevated in invasive ductal carcinomas (p = 0.002), whereas basal-like tumors had decreased expression of miR-140-5p compared to other tumors (p = 0.008). Lymph node-positive samples showed an approximately 13-fold increase in miR-140-5p expression compared to lymph node-negative tissue (p = 0.049). These findings suggest that miR-140-5p, but not miR-193b, could be an important determinant of IGFBP5 expression and clinical phenotype in breast cancer patients. Further studies are needed to clarify the expressional regulation of IGFBP5 by miR-140-5p.  相似文献   
8.
We investigated whether 8-week treadmill training strengthens antioxidant enzymes and decreases lipid peroxidation in rat heart. The effects of acute exhaustive exercise were also investigated. Male rats (Rattus norvegicus, Sprague-Dawley strain) were divided into trained and untrained groups. Both groups were further divided equally into two groups where the rats were studied at rest and immediately after exhaustive exercise. Endurance training consisted of treadmill running 1.5 h day(-1), 5 days week(-1) for 8 weeks. For acute exhaustive exercise, graded treadmill running was conducted. Malondialdehyde level in heart tissue was not affected by acute exhaustive exercise in untrained and trained rats. The activities of glutathione peroxidase and glutathione reductase enzymes decreased by both acute exercise and training. Glutathione S-transferase and catalase activities were not affected. Total and non-enzymatic superoxide scavenger activities were not affected either. Superoxide dismutase activity decreased by acute exercise in untrained rats; however, this decrease was not observed in trained rats. Our results suggested that rat heart has sufficient antioxidant enzyme capacity to cope with exercise-induced oxidative stress, and adaptive changes in antioxidant enzymes due to endurance training are limited.  相似文献   
9.
The major functional alpha1-adrenoceptor in the rat aorta is of the alpha1Dsubtype and that in the caudal artery is of the alpha1A subtype. In the present study, the participation of protein kinase C (PKC) and Rho kinase (RhoK) in contractile responses to stimulation of the alpha1-adrenoceptors in these two arteries was investigated. Both the PKC inhibitor Ro-318220 and the RhoK inhibitor Y-27632 significantly blocked contractile responses of the aorta to phenylephrine (PE) and the selective alpha1A-adrenoceptor agonist A61603. When used in combination, the inhibitors had an additive blocking effect. In the caudal artery, Y-27632 but not Ro-318220 inhibited contractile responses to PE and A61603, and, in combination, the antagonism produced was no greater than that by Y-27632 alone. Contractile responses to direct activation of PKC with phorbol 12,13-dibutyrate were much smaller and levels of CPI-17 (PKC-activated protein phosphatase inhibitor of 17 kDa) were much lower in the caudal artery than the aorta. The results suggest that both PKC and RhoK contribute independently to contractile responses to stimulation of alpha1D-adrenoceptors in the aorta. However, RhoK, but not PKC, participates in contractile responses to stimulation of alpha1A-adrenoceptors in the caudal artery. This difference may largely be due to differences between the two arteries in the extent to which PKC participates in contraction.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号