首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  4篇
  2021年   1篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Distance based reconstruction methods of phylogenetic trees consist of two independent parts: first, inter-species distances are inferred assuming some stochastic model of sequence evolution; then the inferred distances are used to construct a tree. In this paper we concentrate on the task of inter-species distance estimation. Specifically, we characterize the family of valid distance functions for the assumed substitution model and show that deliberate selection of distance function significantly improves the accuracy of distance estimates and, consequently, also improves the accuracy of the reconstructed tree.Our contribution consists of three parts: first, we present a general framework for constructing families of additive distance functions for stochastic evolutionary models. Then, we present a method for selecting (near) optimal distance functions, and we conclude by presenting simulation results which support our theoretical analysis.  相似文献   
2.
ABSTRACT: BACKGROUND: Distance-based phylogenetic reconstruction methods use evolutionary distances between species in order to reconstruct the phylogenetic tree spanning them. There are many different methods for estimating distances from sequence data. These methods assume different substitution models and have different statistical properties. Since the true substitution model is typically unknown, it is important to consider the effect of model misspecification on the performance of a distance estimation method. RESULTS: This paper continues the line of research which attempts to adjust to each given set of input sequences a distance function which maximizes the expected topological accuracy of the reconstructed tree. We focus here on the effect of systematic error caused by assuming an inadequate model, but consider also the stochastic error caused by using short sequences. We introduce a theoretical framework for analyzing both sources of error based on the notion of deviation from additivity, which quantifies the contribution of model misspecification to the estimation error. We demonstrate this framework by studying the behavior of the Jukes-Cantor distance function when applied to data generated according to Kimura's two-parameter model with a transition-transversion bias. We provide both a theoretical derivation for this case, and a detailed simulation study on quartet trees. CONCLUSIONS: We demonstrate both analytically and experimentally that by deliberately assuming an oversimplified evolutionary model, it is possible to increase the topological accuracy of reconstruction. Our theoretical framework provides new insights into the mechanisms that enables statistically inconsistent reconstruction methods to outperform consistent methods.  相似文献   
3.
Many bacterial species that cannot sporulate, such as the model bacterium Escherichia coli, can nevertheless survive for years, following exhaustion of external resources, in a state termed long-term stationary phase (LTSP). Here we describe the dynamics of E. coli adaptation during the first three years spent under LTSP. We show that during this time, E. coli continuously adapts genetically through the accumulation of mutations. For nonmutator clones, the majority of mutations accumulated appear to be adaptive under LTSP, reflected in an extremely convergent pattern of mutation accumulation. Despite the rapid and convergent manner in which populations adapt under LTSP, they continue to harbor extensive genetic variation. The dynamics of evolution of mutation rates under LTSP are particularly interesting. The emergence of mutators affects overall mutation accumulation rates as well as the mutational spectra and the ultimate spectrum of adaptive alleles acquired under LTSP. With time, mutators can evolve even higher mutation rates through the acquisition of additional mutation rate–enhancing mutations. Different mutator and nonmutator clones within a single population and time point can display extreme variation in their mutation rates, resulting in differences in both the dynamics of adaptation and their associated deleterious burdens. Despite these differences, clones that vary greatly in their mutation rates tend to coexist within their populations for many years, under LTSP.  相似文献   
4.

Background  

The definition of a distance measure plays a key role in the evaluation of different clustering solutions of gene expression profiles. In this empirical study we compare different clustering solutions when using the Mutual Information (MI) measure versus the use of the well known Euclidean distance and Pearson correlation coefficient.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号