首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   12篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   11篇
  2014年   8篇
  2013年   16篇
  2012年   14篇
  2011年   11篇
  2010年   9篇
  2009年   11篇
  2008年   8篇
  2007年   7篇
  2006年   9篇
  2005年   8篇
  2004年   10篇
  2003年   7篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   7篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有225条查询结果,搜索用时 31 毫秒
1.
Sixteen asparagine-linked oligosaccharides ranging in size from (Man)2(GlcNAc)2 (Fuc)1 to (GlcNAc)6(Man)3(GlcNAc)2 were obtained from human 1-acid glycoprotein and fibrinogen, hen ovomucoid and ovalbumin, and bovine fetuin, fibrin and thyroglobulin by hydrazinolysis, mild acid hydrolysis and glycosidase treatment. The oligosaccharides hadN-acetylglucosamine at the reducing termini and mannose andN-acetylglucosamine residues at the non-reducing termini and were prepared for use asN-acetylglucosaminyltransferase substrates. Purification of the oligosaccharides involved gel filtration and high performance liquid chromatography on reverse phase and amine-bonded silica columns. Structures were determined by 360 MHz and 500 MHz proton nuclear magnetic resonance spectroscopy, fast atom bombardment-mass spectrometry and methylation analysis. Several of these oligosaccharides have not previously been well characterized.Abbreviations bis bisecting GlcNAc - DMSO dimethylsulfoxide - FAB fast atom bombardment - Fuc l-fucose - Gal d-galactose - GLC gas-liquid chromatography - GlcNAc or Gn N-acetyl-d-glucosamine - HPLC high performance liquid chromatography - Man or M d-mannose - MES 2-(N-morpholino)ethanesulfonate - MS mass spectrometry - NMR nuclear magnetic resonance - PIPES piperazine-N,N-bis(2-ethane sulfonic acid) the nomenclature of the oligosaccharides is shown in Table 1.  相似文献   
2.
Summary The proteins of three anodal Gc1 variants, Gc 1A16, 1A11, and 1A17, are characterized by the most acidic isoelectric points observed so far among the different Gc mutants. Stepwise removal of N-acetylneuraminic acid (NANA) by treatment with neuraminidase was performed to estimate the degree of sialilation of these Gc variants. The results indicate that both proteins, the anodal and the cathodal component of these Gc 1 mutants, carry sialic acid residues. This observation is remarkable in so far as usually only the anodal component of the Gc 1 protein contains NANA and only a single residue. From the experiments carried out it can be deduced that Gc 1A16 has two NANA residues in the anodal and one NANA residue in the cathodal component. Gc 1A16 was found in four members of three generations in a Danish family; the variant segregated as a Mendelian trait. More difficult to interprete are the results obtained with the variants Gc 1A11 and Gc 1A17. Gc 1A11 probably has three NANA residues in the anodal and two NANA residues in the cathodal component. Gc 1A11 has been observed in two mother-child pairs and is presumably also a simple genetic trait. Gc 1A17 has also several NANA residues in both Gc proteins; it is suggested that the anodal component has either three or four NANA residues and the cathodal component either two or three NANA residues. Family information on this variant is not yet available.  相似文献   
3.
Analysis for genetic variation of insular and mainland populations ofEulemur macaco has revealed: (1) a different degree of genetic variation between populations; and (2) the phylogenetic relationships between groups, on the islands of Nosy-Be and Nosy-Komba, and in the Peninsula of Ambato (Madagascar). Eleven systems of blood proteins from 157 animals were used as genetic markers. The genetic variation was lower on the island of Nosy-Komba than in the mainland of Ambato. This is consistent with the expectation that genetic variation is lower on islands than on mainlands. In contrast, the genetic variation on the island of Nosy-Be was the highest of the three populations. This finding can best be explained by assuming that the sample of Nosy-Be consists of individuals of several small isolated groups, where genetic drift computation showed the population of Nosy-Be to be distinct, and the populations of Nosy-Komba and Ambato to be close within the same branch of the dendrogram. These findings give an insight into the population history of the island of Nosy-Komba, which might have been populated by mainland groups from Ambato.  相似文献   
4.
UDP-GlcNAc: Man1-6R (1-2)-N-acetylglucosaminyltransferase II (GlcNAc-T II; EC 2.4.1.143) is a key enzyme in the synthesis of complexN-glycans. We have tested a series of synthetic analogues of the substrate Man1-6(GlcNAc1-2Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T II. The enzyme attachesN-acetylglucosamine in 1-2 linkage to the 2-OH of the Man1-6 residue. The 2-deoxy analogue is a competitive inhibitor (K i=0.13mm). The 2-O-methyl compound does not bind to the enzyme presumably due to steric hindrance. The 3-, 4- and 6-OH groups are not essential for binding or catalysis since the 3-, 4- and 6-deoxy and -O-methyl derivatives are all good substrates. Increasing the size of the substituent at the 3-position to pentyl and substituted pentyl groups causes competitive inhibition (K i=1.0–2.5mm). We have taken advantage of this effect to synthesize two potentially irreversible GlcNAc-T II inhibitors containing a photolabile 3-O-(4,4-azo)pentyl group and a 3-O-(5-iodoacetamido)pentyl group respectively. The data indicate that none of the hydroxyls of the Man1-6 residue are essential for binding although the 2- and 3-OH face the catalytic site of the enzyme. The 4-OH group of the Man-O-octyl residue is not essential for binding or catalysis since the 4-deoxy derivative is a good substrate; the 4-O-methyl derivative does not bind. This contrasts with GlcNAc-T I which cannot bind to the 4-deoxy-Man- substrate analogue. The data are compatible with our previous observations that a bisectingN-acetylglucosamine at the 4-OH position prevents both GlcNAc-T I and GlcNAc-T II catalysis. However, in the case of GlcNAc-T II, the bisectingN-acetylglucosamine prevents binding due to steric hindrance rather than to removal of an essential OH group. The 3-OH of the Man1-3 is an essential group for GlcNAc-T II since the 3-deoxy derivative does not bind to the enzyme. The trisaccharide GlcNAc1-2Man1-3Man-O-octyl is a good inhibitor (K i=0.9mm). The above data together with previous studies indicate that binding of the GlcNAc1-2Man1-3Man- arm of the branched substrate to the enzyme is essential for catalysis. Abbreviations: GlcNAc-T I, UDP-GlcNAc:Man1-3R (1-2)-N-acetylglucosaminyltransferase I (EC 2.4.1.101); GlcNAc-T II, UDP-GlcNAc:Man1-6R (1-2)-N-acetylglucosaminyltransferase II (EC 2.4.1.143); MES, 2-(N-morpholino)ethane sulfonic acid monohydrate.  相似文献   
5.
Coastal kelp forests produce substantial marine carbon due to high annual net primary production (NPP) rates, but upscaling of NPP estimates over time and space remains difficult. We investigated the impact of variable underwater photosynthetically active radiation (PAR) and photosynthetic parameters on photosynthetic oxygen production of Laminaria hyperborea, the dominant NE-Atlantic kelp species, throughout summer 2014. Collection depth of kelp had no effect on chlorophyll a content, pointing to a high photoacclimation potential of L. hyperborea towards incident light. However, chlorophyll a and photosynthesis versus irradiance parameters differed significantly along the blade gradient when normalized to fresh mass, potentially introducing large uncertainties in NPP upscaling to whole thalli. Therefore, we recommend a normalization to kelp tissue area, which is stable over the blade gradient. Continuous PAR measurements revealed a highly variable underwater light climate at our study site (Helgoland, North Sea) in summer 2014, reflected by PAR attenuation coefficients (Kd) between 0.28 and 0.87 m−1. Our data highlight the importance of continuous underwater light measurements or representative average values using a weighted Kd to account for large PAR variability in NPP calculations. Strong winds in August increased turbidity, resulting in a negative carbon balance at depths >3–4 m over several weeks, considerably impacting kelp productivity. Estimated daily summer NPP over all four depths was 1.48 ± 0.97 g C · m−2 seafloor · d−1 for the Helgolandic kelp forest, which is in the range of other kelp forests along European coastlines.  相似文献   
6.
7.
Two gilts were administered testosterone propionate and their subsequent plasma testosterone concentrations and male sex behavior were recorded. These were compared to testosterone concentrations and male sex behavior in boars. Testosterone propionate (75 mg) was administered to the gilts every other day for 20 days (induction scheme) and every 10 days there-after (maintenance scheme). Concentrations of testosterone in plasma were elevated to concentrations detected in the boars during the induction scheme. During the maintenance scheme, concentrations of testosterone appeared to be lower than in boars. At 20, 30 and 40 days following the first injection, sniffing, nosing and mating song behaviors were exhibited by the testosterone treated gilts similar in frequency to the boars. Mounting behavior was first detected 30 days following the first testosterone propionate injection, and by day 40, the frequency of mounting was greater than observed in boars.  相似文献   
8.
To understand the thermal plasticity of a coastal foundation species across its latitudinal distribution, we assess physiological responses to high temperature stress in the kelp Laminaria digitata in combination with population genetic characteristics and relate heat resilience to genetic features and phylogeography. We hypothesize that populations from Arctic and cold‐temperate locations are less heat resilient than populations from warm distributional edges. Using meristems of natural L. digitata populations from six locations ranging between Kongsfjorden, Spitsbergen (79°N), and Quiberon, France (47°N), we performed a common‐garden heat stress experiment applying 15°C to 23°C over eight days. We assessed growth, photosynthetic quantum yield, carbon and nitrogen storage, and xanthophyll pigment contents as response traits. Population connectivity and genetic diversity were analyzed with microsatellite markers. Results from the heat stress experiment suggest that the upper temperature limit of L. digitata is nearly identical across its distribution range, but subtle differences in growth and stress responses were revealed for three populations from the species’ ecological range margins. Two populations at the species’ warm distribution limit showed higher temperature tolerance compared to other populations in growth at 19°C and recovery from 21°C (Quiberon, France), and photosynthetic quantum yield and xanthophyll pigment responses at 23°C (Helgoland, Germany). In L. digitata from the northernmost population (Spitsbergen, Norway), quantum yield indicated the highest heat sensitivity. Microsatellite genotyping revealed all sampled populations to be genetically distinct, with a strong hierarchical structure between southern and northern clades. Genetic diversity was lowest in the isolated population of the North Sea island of Helgoland and highest in Roscoff in the English Channel. All together, these results support the hypothesis of moderate local differentiation across L. digitata's European distribution, whereas effects are likely too weak to ameliorate the species’ capacity to withstand ocean warming and marine heatwaves at the southern range edge.  相似文献   
9.
The sugar kelp Saccharina latissima experiences a wide range of environmental conditions along its geographical and vertical distribution range. Temperature and salinity are two critical drivers influencing growth, photosynthesis and biochemical composition. Moreover, interactive effects might modify the results described for single effects. In shallow water coastal systems, exposure to rising temperatures and low salinity are expected as consequence of global warming, increased precipitation and coastal run‐off. To understand the acclimation mechanisms of S. latissima to changes in temperature and salinity and their interactions, we performed a mechanistic laboratory experiment in which juvenile sporophytes from Brittany, France were exposed to a combination of three temperatures (0, 8 and 15°C) and two salinity levels (20 and 30 psu (practical salinity units)). After a temperature acclimation of 7 days, sporophytes were exposed to low salinity (20 psu) for a period of 11 days. Growth, and maximal quantum yield of photosystem II (Fv/Fm), pigments, mannitol content and C:N ratio were measured over time. We report for the first time in S. latissima a fivefold increase in the osmolyte mannitol in response to low temperature (0°C) compared to 8 and 15°C that may have ecological and economic implications. Low temperatures significantly affected all parameters, mostly in a negative way. Chlorophyll a, the accessory pigment pool, growth and Fv/Fm were significantly lower at 0°C, while the de‐epoxidation state of the xanthophyll cycle was increased at both 0 and 8°C compared to 15°C. Mannitol content and growth decreased with decreased salinity; in contrast, pigment content and Fv/Fm were to a large extent irresponsive to salinity. In comparison to S. latissima originating from an Arctic population, despite some reported differences, this study reveals a remarkably similar impact of temperature and salinity variation, reflecting the large degree of adaptability in this species.  相似文献   
10.
Rising atmospheric CO2‐concentrations will have severe consequences for a variety of biological processes. We investigated the responses of the green alga Ulva lactuca (Linnaeus) to rising CO2‐concentrations in a rockpool scenario. U. lactuca was cultured under aeration with air containing either preindustrial pCO2 (280 μatm) or the pCO2 predicted by the end of the 21st century (700 μatm) for 31 days. We addressed the following question: Will elevated CO2‐concentrations affect photosynthesis (net photosynthesis, maximum relative electron transport rate (rETR(max)), maximum quantum yield (Fv/Fm), pigment composition) and growth of U. lactuca in rockpools with limited water exchange? Two phases of the experiment were distinguished: In the initial phase (day 1–4) the Seawater Carbonate System (SWCS) of the culture medium could be adjusted to the selected atmospheric pCO2 condition by continuous aeration with target pCO2 values. In the second phase (day 4–31) the SWCS was largely determined by the metabolism of the growing U. lactuca biomass. In the initial phase, Fv/Fm and rETR(max) were only slightly elevated at high CO2‐concentrations, whereas growth was significantly enhanced. After 31 days the Chl a content of the thalli was significantly lower under future conditions and the photosynthesis of thalli grown under preindustrial conditions was not dependent on external carbonic anhydrase. Biomass increased significantly at high CO2‐concentrations. At low CO2‐concentrations most adult thalli disintegrated between day 14 and 21, whereas at high CO2‐concentrations most thalli remained integer until day 31. Thallus disintegration at low CO2‐concentrations was mirrored by a drastic decline in seawater dissolved inorganic carbon and HCO3?. Accordingly, the SWCS differed significantly between the treatments. Our results indicated a slight enhancement of photosynthetic performance and significantly elevated growth of U. lactuca at future CO2‐concentrations. The accelerated thallus disintegration at high CO2‐concentrations under conditions of limited water exchange indicates additional CO2 effects on the life cycle of U. lactuca when living in rockpools.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号