首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1992年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1973年   1篇
  1970年   1篇
  1964年   1篇
  1960年   2篇
  1959年   1篇
  1957年   1篇
  1955年   1篇
  1953年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Birch ( Betula pendula Roth.) was investigated under steady-state nutrition and growth at different incident photon flux densities (PFD) and different relative addition rates of nitrogen. PFD had a strong influence on the relative growth rate at optimum nutrition and on the nitrogen productivity (growth rate per unit of nitrogen) but little effect on the formal relationships between nitrogen and growth, i.e. PFD and nitrogen nutrition are orthogonal growth factors. At a given suboptimum nitrogen (the same distance from optimum), increased PFD increased the relative growth rate and, therefore, the relative uptake rate and the required relative addition rate in accordance with the theoretical equality between these three parameters at steady-state nutrition. Correspondingly, at a given suboptimum relative addition rate, increased PFD decreased nitrogen status (larger distance from optimum) at an unchanged relative growth rate. Nutrient uptake rate, dry matter content, and partitioning of biomass and nutrients are strongly influenced by nitrogen status. PFD influences these characteristics, but only to an extent corresponding to its effect on the nitrogen status. The influence of PDF on the relative growth rate at optimum and on nitrogen productivity is well described by hyperbolic relationships, similar to reported PFD/photosynthesis relationships. These expressions for plant growth as well as the productivities of leaf area and quantum appear to be valuable characteristics of plant responses to light and nutrition. Although the calculated PFD/growth relationships indicate saturation at high values of PFD, a more realistic estimate of PFD at which saturation occurs is about 30 mol m−2 day−1, where the highest relative growth rate and nitrogen productivity were experimentally determined. No significant effect was observed because of day length differences between the present and previous experiments.  相似文献   
2.
The aim of this investigation was to estimate the optimum nutrient requirements and responses to low relative nutrient addition rates of seedlings of two important broadleaf tree species in China, Populus simonii Carr. and Paulownia tomentosa (Thunb.) Steud. In preliminary experiments the optimum nutrient proportions were estimated under high concentration conditions. The nutrients consumed were replaced by means of daily additions determined by pH and conductivity titrations without changing the nutrient solutions. A relatively high K level was needed in relation to nitrogen; higher than in birch or grey alder seedlings. To obtain a high relative growth rate, suitable proportions by weight were 100 N:70 K:14 P:7 Ca:7 Mg for the Populus seedlings and 100 N:75 K:20 P:8 Ca:9 Mg for the Paulownia seedlings.
In studies of nutrient stress responses the relative nutrient addition rate was used as the treatment variable under low conductivity conditions. The responses and relationships were similar to those described for birch, grey alder and Salix . The relative addition rate, and there was also a strong linear regression between relative growth rate and nitrogen status. Relative growth rates were high and the maximum weight increase was about 19% day−1 in Populus and over 25% day−1 in Paulownia . The nitrogen productivity of Paulownia was very high, 0.26 g dry weight (g N)−1 h−1, and for Populus it was 0.16 g dry weight (g N)−1 h−1.  相似文献   
3.
Plant nutrition and growth: Basic principles   总被引:2,自引:0,他引:2  
Soil compaction may restrict shoot growth of sugar beet plants. Roots, however, are the plant organs directly exposed to soil compaction and should therefore be primarily affected. The aim of this study was to determine the influence of mechanical resistance and aeration of compacted soil on root and shoot growth and on phosphorus supply of sugar beet. For this purpose, a silt loam soil was adjusted to bulk densities of 1.30, 1.50 and 1.65 g cm–3 and water tensions of 300 and 60 hPa. Sugar beet was grown in a growth chamber under constant climatic conditions for 4 weeks. Both, decrease of water tension and increase of bulk density impeded root and shoot growth. In contrast, the P supply of the plants was differently affected. At the same air-filled pore volume, the P concentration of the shoots was reduced by a decrease of soil water tension, but not by an increase of bulk density. Both factors also reduced root length and root hair formation, however, in compacted soil the plants partly substituted for the reduction of root size by increasing the P uptake efficiency per unit of root. Shoot growth decreased when root growth was restricted. Both characteristics were closely related irrespective of the cause of root growth limitation by either compaction or water saturation. It is therefore concluded that shoot growth in both the compacted and the wet soil was regulated by root growth. The main factor impeding root growth in compacted soil was penetration resistance, not soil aeration.FAX no corresponding author: +49551 5056299  相似文献   
4.
Birch ( Betula pendula Roth.) was investigated under steady state nutrition and growth at different relative addition rates of phosphorus (Rp). Phosphorus deficiency symptoms appeared on the leaves when the internal phosphorus concentration decreased, but disappeared again under steady state nutrition, independent of the stress level. The increased root/shoot ratio and the exploratory type of root systems developed during the adjustment stage remained under steady state conditions. At nonoptimum and close to optimum relative addition rates, independent of the rate, the phosphorus concentration of the culture solution did not exceed 2 μmol dm−3 and was generally < 1 μmol dm−3 immediately after phosphorus additions. The phosphorus concentration just before additions was generally < 0.5 μmol dm−3. The nutrition/growth relationships were similar to those for nitrogen, with relative growth rate (Rg) closely related to the Rp applied and with a strong linear relationship between internal phosphorus concentration and Rg. Regression was much steeper than that for nitrogen. The slope of the optimum nutrition was attained at a lower phosphorus weight proportion to nitrogen (8–10 P: 100 N) than previously estimated (= 13 P: 100 N), but a higher relative phosphorus requirement was observed under stress conditions. Birch seedlings had a strong tendency to consume phosphorus in excess of immediate requirements with a small effect on growth above optimum. This resulted in rapidly decreasing phosphorus productivity (Pp, growth rate per unit of phosphorus) with increasing internal phosphorus concentrations above optimum.  相似文献   
5.
Ectomycorrhizal seedlings of Scots pine ( Pinus sylvestris L. cv.), inoculated with the fungus Suillus bovinus (L. ex Fr.) O. Kuntze, and non-mycorrhizal controls were grown in growth units with a circulating culture solution. Steady-state nutrition and constant relative growth rates were achieved by means of varied relative nutrient addition rates and free access of nutrients. Typical mycorrhizas always formed within a short period of time after inoculation. The nutrition/growth relationships were in principle similar to previous studies under steady-state conditions: there were close linear relationships between relative addition rate, relative growth rate and internal nitrogen concentration, i.e. an equilibrium established between nutrients added and taken up. This occurred when infected and uninfected seedlings were grown separately. When grown together in the same growth unit, there are indications that the fungus influenced the exudation pattern of the uninfected seedlings. More carbon was thus provided to the unspecified microflora in the cultivation system, and it was able to grow and withhold nitrogen from the seedlings. The mycorrhizal infection did not increase the specific uptake capacity of the roots, and the fungus constituted a sink for carbon. However, the nitrogen productivity (growth rate per unit of nitrogen per unit of time) was similar for mycorrhizal and non-mycorrhizal seedlings, so that there might be mechanisms which compensate for the carbon cost.  相似文献   
6.
Mineral nutrient requirements of cucumber seedlings   总被引:1,自引:0,他引:1       下载免费PDF全文
Mineral nutrient requirements for maximum growth rate of cucumber (Cucumis sativus L.) seedlings are estimated on the basis of three criteria. 1. The optimal weight proportions among the nutrients present in the seedlings. In relation to N = 100, close to 75 K, 13 P, 9 Ca, and 9 Mg are required. 2. The optimal ratio between the nitrogen sources NH4 and NO3 in the solution. The best growth is recorded with about equivalent amounts. Nitrate alone is also highly productive. Cucumber prefers nitrate and is sensitive to high ammonium concentrations. 3. The optimal total concentration in the solution corresponds to 200 to 300 milligrams of nitrogen per liter, with the proportions of the nutrients according to criterion 1. Simple growth methods are suggested in which the three criteria are fulfilled.  相似文献   
7.
8.
Theories and methods on plant nutrition and growth   总被引:19,自引:0,他引:19  
A theory comprising two basic concepts relating nutrition and growth is presented. The first concept is a nutrient flux model and is based upon studies of plants at constant internal nutrient concentrations, where a formal mathematical derivation shows that the relative uptake rate (RU) and the relative growth rate (RG) are equal. Deviations from equality are results of experimental insufficiencies and errors. The second concept is based on the observation that RG is linearly related to the internal nutrient concentration. The slope represents nutrient productivity (Pn), an important parameter expressing growth rate per unit of nutrient. Light and the plant genome, for example, influence the value of the proportionality factor, Pn, but not the formal relationship between the internal nutrient concentration and RG Not only the theory itself but many results and conclusions are very different from those obtained with traditional methods. In experiments where RU was controlled during the exponential period of growth, the relationships between treatment (the relative addition rate, RA), nutrient uptake (RU) and growth (RG) were reproduced with extremely low variability. In agreement with theory, internal nutrient concentration and RG remained stable over time (steady-state). An extension of the theory is based upon the empirical assumption that after exponential growth, self-shading and ageing reduce Pn in proportion to biomass. This assumption has been successfully applied in predicting growth of forest stands, but the nature of the growth reduction is little understood. The generalized model has few parameters and can easily be rewritten to suit different experimental aims, for example to establish reference values and to model changes in soil fertility. Further extension and understanding of the model and different interpretations of the parameters are discussed.  相似文献   
9.
10.
Birch (Betula verrucosa Ehrh.) and grey alder (Alnus incana Moench) seedlings were grown with varied relative addition rates of all nutrients, up to optimum for vegetative growth. The root medium was basically distilled water to which the nutrients, contained in stock solutions in fixed proportions, were added every second hour and in exponentially increased amounts for consumption during the subsequent period. The nutrient weight proportions previously found to be required in birch (100 N:65 K:13 P) were used in all treatments. However, the nutrient proportions required in grey alder were found to be somewhat different (100 N:50 K:18 P). The use of the required proportions in the additions was important for maintenance of maximum growth, efficient nutrient utilization, and low concentrations in the root medium. Luxury consumption and inefficiency occurred at high concentrations. The results show that the nutrient requirements are sufficiently defined, for different relative growth rates, by the nutrient proportions and the relative addition rate. No clear relationships were found between conductivity or concentration in the root medium and the addition rate, net uptake rate, nutrient status, or relative growth rate. The results are in good agreement with data from low concentration and depletion experiments reported in the literature, showing that non-limited uptake rates occur down to very low concentrations. Thus, there is strong evidence that concentration has been incorrectly used when applied as the treatment variable for plant nutrition in plant science and cultivation practice. The dominant factors in sub-optimum and optimum nutrition are the amounts of nutrients available per unit of time, the growth rate, and the nutrient proportions. At low concentration levels, physical factors such as stirring and flow rate of nutrient solution and boundary layer effects are decisive for the rates with which the nutrients become available to the roots. Therefore, at low levels, concentration alone cannot be used as the factor determining nutrient uptake rate. At high levels, concentration is effective as a supra-optimum factor and increased internal percentage contents cause decreased uptake efficiency, thus counter-acting the concentration effect. Nitrogen effects dominated the stress indications when the internal nitrogen percentage content decreased from optimum to the level of the treatments in the beginning of the experiments. Leaf deficiency symptoms disappeared and the root/shoot ratio change ceased when nitrogen status stabilized. Strong linear regressions were found between any two of the variables: relative addition rate of nutrients, relative growth rate, and nutrient status.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号