首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   3篇
  2021年   1篇
  2020年   1篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
2.
The consequences of sterol deficiency in feeding of adult Drosophila females have been studied. Feeding of Drosophila on nys 1 mutant strain yeast leads to significant increase of non-developed eggs in Drosophila females. The effect of sterol deficiency on oogenesis in virgin and fertilized females has been estimated using different regimens of feeding. Possible mechanisms of arising of fertility defects are discussed.  相似文献   
3.
SUP35is an omnipotent suppressor gene of Saccharomyces cerevisiae coding for a protein consisting of a C-terminal part similar to the elongation factor EF-1α and a unique N-terminal sequence of 253 amino acids. Twelve truncated versions of the SUP35 gene were generated by the deletion of fragments internal to the coding sequence. Functional studies of these deletion mutants showed that: (i) only the EF-1α-like C-terminal part of the Sup35 protein is essential for the cell viability; (ii) overexpression of either the N-terminal part of the Sup35 protein or the full-length Sup35 protein decreases translational fidelity, resulting in omnipotent suppression and reduced growth of [psi+] strains; (iii) expression of the C-terminal part of the Sup35 protein generates an antisuppressor phenotype; and (iv) both the N- or C-terminal segments of the Sup35 protein can bind to 80S ribosomes. Thus, the data obtained define two domains within the Sup35 protein which are responsible for different functions.  相似文献   
4.
Summary Recessive suppressor mutations in yeast Saccharomyces cerevisiae alter a component of the cytoplasmic ribosomes, relaxing the control of translational fidelity. As a consequence ribosomes can misread nonsense codons as amino acids (Surguchov et al. 1980a).The suppressor mutants are often respiratory deficient, being unable to grow on non-fermentable substrates. The study of the cytochrome spectra has revealed that the cytochrome b and aa3 contents were lower in the mutants than in the parent strains. Furthermore, the suppresor mutations often cause hypersensitivity to paromomycin and neomycin on media with a non-fermentable source of carbon. Some of the suppressor mutants exhibited both erythromycin and chloramphenicol-dependent growth on media containing ethanol or glycerol as a sole carbon source.These results suggest that the mutations altering cytoplasmic ribosomes may simultaneously impair the mitochondrial translation. A coupling of cytoplasmic and mitochondrial protein synthesis in yeast cells is proposed. The existence of a common protein component participating both in mitochondrial and cytoplasmic protein synthesis apparatus is discussed.  相似文献   
5.
Summary The ribosomal protein patterns of recessive suppressor strain and parent strain of Saccharomyces cerevisiae were analyzed by two-dimensional polyacrylamide gel electrophoresis. About 30 protein spots were found for ribosomal proteins of small subunit for both mutant and parent strain. These patterns do not differ from each other neither in intensity of staining, nor in mobility of spots. 41 protein spots were found in electrophoregrams of 60S ribosomal proteins both from parent strain and recessive suppressor strain. The electrophoretic picture of the 60S proteins from the parent and mutant strains is similar except the intensity of staining of the L30 spot. This protein is present in 60S subunit of suppressor strain and completely absent or only weakly stained on electrophoregrams of ribosomal proteins of parent strain. The possible relationships between the content of L30 protein and the mechanism of recessive suppression in yeast are discussed.  相似文献   
6.
It has been shown that recessive suppressor mutations in the yeast Saccharomyces cerevisiae may cause sensitivity towards low temperatures (very slow growth or lack of growth at 10 degrees C). One of the sup 1 low temperature sensitive (Lts-) mutants, 26-125A-P-2156, was studied in detail. After a prolonged period of incubation (70 h) under restrictive conditions the protein synthesis apparatus in the mutant cells was irreversibly damaged. In addition, Lts- cells incubated under restrictive conditions synthesize unequal amounts of ribosomal subunits, the level of 60 S subunit being reduced. It has been suggested that the recessive suppression is mediated by a mutation in the gene coding for 60 S subunit component, probably a ribosomal protein. The mutation leads simultaneously to a defect in the assembly of 60 S subunit and to low-temperature sensitive growth of the mutant.  相似文献   
7.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
8.
The eukaryotic translation termination factor eRF3 stimulates release of nascent polypeptides from the ribosome in a GTP-dependent manner. In most eukaryotes studied, eRF3 consists of an essential, conserved C-terminal domain and a nonessential, nonconserved N-terminal extension. However, in some species, this extension is required for efficient termination. Our data show that the N-terminal extension of Saccharomyces cerevisiae eRF3 also participates in regulation of termination efficiency, but acts as a negative factor, increasing nonsense suppression efficiency in sup35 mutants containing amino acid substitutions in the C-terminal domain of the protein.  相似文献   
9.
The [PSI(+)] prion can be induced by overproduction of the complete Sup35 protein, but only in strains carrying the non-Mendelian [PIN(+)] determinant. Here we demonstrate that just as [psi (-)] strains can exist as [PIN(+)] and [pin(-)] variants, [PSI(+)] can also exist in the presence or absence of [PIN(+)]. [PSI(+)] and [PIN(+)] tend to be cured together, but can be lost separately. [PSI(+)]-related phenotypes are not affected by [PIN(+)]. Thus, [PIN(+)] is required for the de novo formation of [PSI(+)], not for [PSI(+)] propagation. Although [PSI(+)] induction is shown to require [PIN(+)] even when the only overexpressed region of Sup35p is the prion domain, two altered prion domain fragments circumventing the [PIN(+)] requirement are characterized. Finally, in strains cured of [PIN(+)], prolonged incubation facilitates the reappearance of [PIN(+)]. Newly appearing [PIN(+)] elements are often unstable but become stable in some mitotic progeny. Such reversibility of curing, together with our previous demonstration that the inheritance of [PIN(+)] is non-Mendelian, supports the hypothesis that [PIN(+)] is a prion. Models for [PIN(+)] action, which explain these findings, are discussed.  相似文献   
10.
The product of the SUP35 gene of the saccharomycete yeast, the translation termination eRF3 factor, can be converted in prion, the heritable determinant of protein nature. The nucleotide sequence of this gene from the strain belonging to Peterhof genetic lines of the yeast Saccharomyces cerevisiae was determined. A comparison of the identified sequence with SUP35 sequences in the database of GenBank allowed the detection of polymorphic sites both in the SUP35 gene and its product. The location of polymorphic sites in the evolutionarily nonconserved N-terminal protein region confirmed that this eRF3 fragment lacks functions vital to life activity. Nevertheless, these sites are located in the vicinity of sites, whose role in the prion conversion of eRF3 has been established. Based on this, natural polymorphism of the primary eRF3 structure is assumed to be connected with the existence of different variants (strains) of its prion analog.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号