首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   8篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1994年   3篇
  1990年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.  相似文献   
2.
We examined differences in fine root morphology, mycorrhizal colonisation and root-inhabiting fungal communities between Picea abies individuals infected by Heterobasidion root-rot compared with healthy individuals in four stands on peat soils in Latvia. We hypothesised that decreased tree vitality and alteration in supply of photosynthates belowground due to root-rot infection might lead to changes in fungal communities of tree roots. Plots were established in places where trees were infected and in places where they were healthy. Within each stand, five replicate soil cores with roots were taken to 20 cm depth in each root-rot infected and uninfected plot. Root morphological parameters, mycorrhizal colonisation and associated fungal communities, and soil chemical properties were analysed. In three stands root morphological parameters and in all stands root mycorrhizal colonisation were similar between root-rot infected and uninfected plots. In one stand, there were significant differences in root morphological parameters between root-rot infected versus uninfected plots, but these were likely due to significant differences in soil chemical properties between the plots. Sequencing of the internal transcribed spacer of fungal nuclear rDNA from ectomycorrhizal (ECM) root morphotypes of P. abies revealed the presence of 42 fungal species, among which ECM basidiomycetes Tylospora asterophora (24.6 % of fine roots examined), Amphinema byssoides (14.5 %) and Russula sapinea (9.7 %) were most common. Within each stand, the richness of fungal species and the composition of fungal communities in root-rot infected versus uninfected plots were similar. In conclusion, Heterobasidion root-rot had little or no effect on fine root morphology, mycorrhizal colonisation and composition of fungal communities in fine roots of P. abies growing on peat soils.  相似文献   
3.
Muiznieks LD  Weiss AS 《Biochemistry》2007,46(27):8196-8205
We investigated the flexibility of full-length tropoelastin in solution by using far- and near-ultraviolet circular dichroism (UV CD) and fluorescence spectroscopy to probe for structural flexibility and residue mobility within secondary and tertiary features of the monomer. Fluorescence spectroscopy revealed the presence of exposed hydrophobicity through the binding of the hydrophobic probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate (bis-ANS), which demonstrates that hydrophobic regions form clusters and are not confined to a molecular core. Near-UV CD indicated substantial mobility of aromatic residues. Structural prediction programs (PONDR, DisEMBL, and Globplot version 2.0) estimated 75 +/- 2% disorder in the tertiary structure of tropoelastin on the basis of primary sequence information. A single-site substitution of Trp for Gln (Q513W) at the tropoelastin domain 25-26 interface facilitated fluorescence spectroscopy for revealing that this region is exposed to solvent. Polarization anisotropy demonstrated substantial flexibility of W513 and little change upon denaturation of the monomer with guanidine hydrochloride. Comparable movement was found for native sequence aromatic residues in the presence of glycosaminoglycans and trifluoroethanol. These data prove the intrinsic flexibility of specific residues and adjacent sequences in any native conformation(s) they may take. This study is the first characterization of the level of mobility in defined regions of the full-length tropoelastin monomer and provides direct evidence for regions of flexible structure in tropoelastin.  相似文献   
4.
5.
6.
Elastin is the protein responsible for the elastic properties of vertebrate tissue. Very little is currently known about the structure of elastin or of its soluble precursor tropoelastin. We have used high-resolution solution NMR methods to probe the conformational preferences of a conserved hydrophobic region in tropoelastin, domain 26 (D26). Using a combination of homonuclear, 15N-separated and triple resonance experiments, we have obtained essentially full chemical shift assignments for D26 at 278K. An analysis of secondary chemical shift changes, as well as NOE and 15N relaxation data, leads us to conclude that this domain is essentially unstructured in solution and does not interact with intact tropoelastin. D26 does not display exposed hydrophobic clusters, as expected for a fully unfolded protein and commensurate with an absence of flexible structural motifs, as identified by lack of binding of the fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. Sedimentation equilibrium data establish that this domain is strictly monomeric in solution. NMR spectra recorded at 278 and 308K indicate that no significant structural changes occur for this domain over the temperature range 278-308K, in contrast to the characteristic coacervation behavior that is observed for the full-length protein.  相似文献   
7.
The extracellular matrix is an integral and dynamic component of all tissues. Macromolecular compositions and structural architectures of the matrix are tissue-specific and typically are strongly influenced by the magnitude and direction of biomechanical forces experienced as part of normal tissue function. Fibrous extracellular networks of collagen and elastin provide the dominant response to tissue mechanical forces. These matrix proteins enable tissues to withstand high tensile and repetitive stresses without plastic deformation or rupture. Here we provide an overview of the hierarchical molecular and supramolecular assembly of collagens and elastic fibers, and review their capacity for mechanical behavior in response to force. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   
8.
9.
Polymeric elastin provides the physiologically essential properties of extensibility and elastic recoil to large arteries, heart valves, lungs, skin and other tissues. Although the detailed relationship between sequence, structure and mechanical properties of elastin remains a matter of investigation, data from both the full‐length monomer, tropoelastin, and smaller elastin‐like polypeptides have demonstrated that variations in protein sequence can affect both polymeric assembly and tensile mechanical properties. Here we model known splice variants of human tropoelastin (hTE), assessing effects on shape, polymeric assembly and mechanical properties. Additionally we investigate effects of known single nucleotide polymorphisms in hTE, some of which have been associated with later‐onset loss of structural integrity of elastic tissues and others predicted to affect material properties of elastin matrices on the basis of their location in evolutionarily conserved sites in amniote tropoelastins. Results of these studies show that such sequence variations can significantly alter both the assembly of tropoelastin monomers into a polymeric network and the tensile mechanical properties of that network. Such variations could provide a temporal‐ or tissue‐specific means to customize material properties of elastic tissues to different functional requirements. Conversely, aberrant splicing inappropriate for a tissue or developmental stage or polymorphisms affecting polymeric assembly could compromise the functionality and durability of elastic tissues. To our knowledge, this is the first example of a study that assesses the consequences of known polymorphisms and domain/splice variants in tropoelastin on assembly and detailed elastomeric properties of polymeric elastin.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号