首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   67篇
  2022年   10篇
  2021年   21篇
  2020年   15篇
  2019年   13篇
  2018年   22篇
  2017年   8篇
  2016年   19篇
  2015年   22篇
  2014年   28篇
  2013年   41篇
  2012年   60篇
  2011年   67篇
  2010年   34篇
  2009年   33篇
  2008年   32篇
  2007年   35篇
  2006年   40篇
  2005年   38篇
  2004年   33篇
  2003年   42篇
  2002年   41篇
  2001年   11篇
  2000年   5篇
  1999年   11篇
  1998年   8篇
  1997年   12篇
  1996年   9篇
  1995年   5篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   7篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   9篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1974年   3篇
  1968年   3篇
  1967年   4篇
  1965年   6篇
  1964年   2篇
排序方式: 共有851条查询结果,搜索用时 765 毫秒
1.
Summary Hydrogen is consumed by methanogenic, sulphate-reducing, and homoacetogenic bacteria and members of these bacterial groups are able to grow chemolithotrophically with hydrogen as sole energy source. Cathodic hydrogen consumption by sulphate-reducing bacteria has been proposed as one of the factors in the anaerobic corrosion of metals. Desulfovibrio spp. were able to utilize cathodic hydrogen from mild steel as the only source of energy for growth with sulphate or nitrate as terminal electron acceptor. Other hydrogen-oxidizing bacteria such as Methanospirillum hungatei, Acetobacterium woodii and Wolinella succinogenes were also able to utilize cathodic hydrogen from mild steel for energy generation and growth. Weight loss studies of mild steel coupons under different growth conditions of Desulfovibrio spp. indicated that hydrogen removal alone is not the cause of corrosion and the depolarization phenomenon probably plays a role only in the initiation of the anaerobic microbial corrosion process.  相似文献   
2.
A variety of sulfur-containing compounds were investigated for use as medium reductants and sulfur sources for growth of four methanogenic bacteria. Sulfide (1 to 2 mM) served all methanogens investigated well. Methanococcus thermolithotrophicus and Methanobacterium thermoautotrophicum Marburg and delta H grew well with S0, SO3(2-), or thiosulfate as the sole sulfur source. Only Methanococcus thermolithotrophicus was able to grow with SO4(2-) as the sole sulfur source. 2-Mercaptoethanol at 20 mM was greatly inhibitory to growth of Methanococcus thermolithotrophicus on SO4(2-) or SO2(2-) and Methanobacterium thermoautotrophicum Marburg on SO3(2-) but not to growth of strain delta H on SO3(2-). Sulfite was metabolized during growth by Methanococcus thermolithotrophicus. Sulfide was produced in cultures of Methanococcus thermolithotrophicus growing on SO4(2-), SO3(2-), thiosulfate, and S0. Methanobacterium thermoautotrophicum Marburg was successfully grown in a 10-liter fermentor with S0, SO3(2-), or thiosulfate as the sole sulfur source.  相似文献   
3.
4.
A variety of compounds were investigated for use as sulfur sources for the growth of methanogenic bacteria.Methanococcus (Mc.) deltae, Mc. maripaludis, Methanobacterium (Mb.) speciesGC-2B, GC-3B, andMMY, Methanobrevibacter (Mbr.) ruminantium, andMethanosarcina (Ms.) barkeri strain 227 grew well with sulfide, So, thiosulfate, or cysteine as sole sulfur source.Mbr. ruminatium was able to grow on SO 4 = or SO 3 = , andMs. barkeri strain 227 was able to grow on SO 3 = , but not on SO 4 = as a sole sulfur source.Mc. jannaschii grew with sulfide, So, thiosulfate or SO 3 = , but not on cysteine or SO 4 = as sole surface source.Mc. thermolithotrophicus, Mc. jannaschii, Mc. deltae, andMb. thermoautotrophicum strains Marburg and H were able to grow with methanethiol, ethanethiol,n-propanethiol,n-butanethiol, methyl sulfide, dimethyl sulfoxide, ethyl sulfide, or CS2 as a sulfur source, when very low levels (20–30 M) of sulfide were present; no growth occurred on 5–100 M sulfide alone. Methanethiol, ethanethiol, and methyl sulfide-using cultures produced sulfide during growth.  相似文献   
5.
Repeated treatment of ethanol for 5 consecutive days has produced significant biochemical changes in the small intestine of the rat. The LDH and SDH were inhibited leading to deficient energy output from the glycolytic pathway and the Krebs cycle. The changes in ammonia metabolic profiles of intestine and blood indicate the presence of hyperammonemia. Enzymatic reactions associated with urea production and the levels of urea were increased. GS activity decreased explaining low levels of glutamine. These studies implicate PNC in producing hyperammonemia during ethanol treatment.  相似文献   
6.
Mixtures of (14)C-labelled glucose plus pyruvate were incubated either with rat diaphragm or slices of rat liver. Incorporation of glucose carbon into glycogen was compared with its incorporation into glucose 6-phosphate relative to the incorporation of pyruvate carbon into these metabolic products. There was no preferential incorporation of glucose carbon relative to pyruvate carbon into glycogen compared with glucose 6-phosphate in the liver slices, but there was in diaphragm. On the assumption that glucose 6-phosphate is a necessary intermediate in the conversion of pyruvate carbon into glycogen, this is evidence for the existence in muscle, but not in liver, of more than one pool of glucose 6-phosphate or of a pathway from glucose to glycogen without glucose 6-phosphate as an intermediate. Galactose carbon, relative to pyruvate carbon, was preferentially incorporated into liver glycogen, so that a substrate converted in liver into glycogen without glucose 6-phosphate as an intermediate could be detected by this approach.  相似文献   
7.
8.
9.
Byssus thread production ofD. polymorpha under different conditions of temperature, salinity and agitation were studied in the laboratory. The acclimation to salinity and temperature greatly affects the byssus production ofD. polymorpha. Byssus production of mussels was significantly reduced when temperature increased beyond 20°C and decreased below 10°C. Mussels with cut threads (for counting), produced a substantially increased number of threads. However, mussels with uncut byssus threads were comparatively more mobile. Byssus production of mussels did not vary significantly at salinities up to 3. Beyond this salinity byssus production was reduced significantly. Mussels increased their byssus production with increasing frequency of agitation.  相似文献   
10.
The histidine-containing protein (HPr) of bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) serves a central role in a series of phosphotransfer reactions used for the translocation of sugars across cell membranes. These studies report the high-definition solution structures of both the unphosphorylated and histidine phosphorylated (P-His) forms of HPr from Bacillus subtilis. Consistent with previous NMR studies, local conformational adjustments occur upon phosphorylation of His 15, which positions the phosphate group to serve as a hydrogen bond acceptor for the amide protons of Ala 16 and Arg 17 and to interact favorably with the alpha-helix macrodipole. However, the positively charged side chain of the highly conserved Arg 17 does not appear to interact directly with phospho-His 15, suggesting that Arg 17 plays a role in the recognition of other PTS enzymes or in phosphotransfer reactions directly. Unlike the results reported for Escherichia coli P-His HPr (Van Nuland NA, Boelens R, Scheek RM, Robillard GT, 1995, J Mol Biol 246:180-193), our data indicate that phosphorylation of His 15 is not accompanied by adoption of unfavorable backbone conformations for active site residues in B. subtilis P-Ser HPr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号