首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   27篇
  2024年   3篇
  2022年   5篇
  2021年   8篇
  2020年   2篇
  2019年   5篇
  2018年   11篇
  2017年   4篇
  2016年   9篇
  2015年   9篇
  2014年   11篇
  2013年   20篇
  2012年   28篇
  2011年   29篇
  2010年   15篇
  2009年   17篇
  2008年   10篇
  2007年   14篇
  2006年   18篇
  2005年   15篇
  2004年   16篇
  2003年   17篇
  2002年   19篇
  2001年   3篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1987年   7篇
  1986年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   6篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1967年   2篇
  1965年   3篇
  1964年   2篇
排序方式: 共有365条查询结果,搜索用时 15 毫秒
1.
Repeated treatment of ethanol for 5 consecutive days has produced significant biochemical changes in the small intestine of the rat. The LDH and SDH were inhibited leading to deficient energy output from the glycolytic pathway and the Krebs cycle. The changes in ammonia metabolic profiles of intestine and blood indicate the presence of hyperammonemia. Enzymatic reactions associated with urea production and the levels of urea were increased. GS activity decreased explaining low levels of glutamine. These studies implicate PNC in producing hyperammonemia during ethanol treatment.  相似文献   
2.
Mixtures of (14)C-labelled glucose plus pyruvate were incubated either with rat diaphragm or slices of rat liver. Incorporation of glucose carbon into glycogen was compared with its incorporation into glucose 6-phosphate relative to the incorporation of pyruvate carbon into these metabolic products. There was no preferential incorporation of glucose carbon relative to pyruvate carbon into glycogen compared with glucose 6-phosphate in the liver slices, but there was in diaphragm. On the assumption that glucose 6-phosphate is a necessary intermediate in the conversion of pyruvate carbon into glycogen, this is evidence for the existence in muscle, but not in liver, of more than one pool of glucose 6-phosphate or of a pathway from glucose to glycogen without glucose 6-phosphate as an intermediate. Galactose carbon, relative to pyruvate carbon, was preferentially incorporated into liver glycogen, so that a substrate converted in liver into glycogen without glucose 6-phosphate as an intermediate could be detected by this approach.  相似文献   
3.
Lipopolysaccharides of eight wild-type strains of the phototrophic bacterium Rhodospirillum tenue have been analyzed. All of the lipopolysaccharides are highly lipophilic. The compositions of preparations obtained by the phenol-water or by the phenol-chloroform-petroleum ether procedure are very similar. The polysaccharide moiety, obtained by mild acid hydrolysis of lipopolysaccharide, consists mainly of aldoheptoses: L-glycero-D-mannoheptose is present in all strains, whereas D-glycero-D-mannoheptose is an additional constituent in some strains. Galactosaminuronic acid and two unknown ninhydrin-positive components were detected in the lipopolysaccharides of six strains. Spermidine and putrescine are present in large amounts in a salt-like linkage in the lipopolysaccharides from three strains. 2-Keto-3-deoxyoctonate forms the linkage between the polysaccharide moiety and lipid A. The lipid A fraction contains all the glucosamine and all the D-arabinose present in the lipopolysaccharide. D-Arabinose is an invariable constituent of the lipid A from the Rhodopseudomonas tenue lipopolysaccharides investigated. The principal fatty acids are beta-hydroxycapric, myristic, and palmitic acids. The isolated R. tenue lipopolysaccharides (O-antigens) react with rabbit antisera prepared against homologous cells. The titers in passive hemagglutination are low, similar to those found with enterobacterial R-lipopolysaccharides. R. tenue O-antigens containing only L-glycero-D-mannoheptose and those containing both the L- and D-epimers of glycero-D-mannoheptose could not be differentiated by serological means.  相似文献   
4.
Neurochemical consequences of repeated ethanol treatment on energy and ammonia metabolism were studied in different regions of rat brain. Energy production was decreased as indicated by lowered lactate dehydrogenase and succinate dehydrogenase activities with possible lacticacidimia. Transamination of alanine and aspartate increased while the deamination of glutamate decreased in all the regions of brain. The deamination of AMP was slightly elevated in cerebral cortex and brain stem while it was inhibited in cerebellum. Ammonia levels were persistently high, despite stepped up glutamine synthesis and ureogenesis. The synergistic action of ammonia during ethanol intoxication is envisaged.  相似文献   
5.
Guinea pigs were given ascorbic acid orally in two doses; a low and a high dose. The tissue levels of ascorbic acid-2-sulphate was estimated in these animals after 15 days of feeding and a subsequent deprivation period of 15 days. The specific activity of the enzymes ascorbic acid sulphotransferase and ascorbic acid-2-sulphate sulphohydrolase was studied. During higher ascorbic acid intake, the activity of ascorbic acid sulphotransferase was increased, whereas ascorbic acid-2-sulphate sulphohydrolase showed a decreased activity. But when ascorbic acid intake was lowered or ceased, the activity of the above enzymes showed a reverse pattern. Possible reasons for the lack of antiscorbutic activity of ascorbic acid-2-sulphate in guinea pigs is discussed.  相似文献   
6.
Resurgent Na current flows as voltage-gated Na channels recover through open states from block by an endogenous open-channel blocking protein, such as the NaVβ4 subunit. The open-channel blocker and fast-inactivation gate apparently compete directly, as slowing the onset of fast inactivation increases resurgent currents by favoring binding of the blocker. Here, we tested whether open-channel block is also sensitive to deployment of the DIV voltage sensor, which facilitates fast inactivation. We expressed NaV1.4 channels in HEK293t cells and assessed block by a free peptide replicating the cytoplasmic tail of NaVβ4 (the “β4 peptide”). Macroscopic fast inactivation was disrupted by mutations of DIS6 (L443C/A444W; “CW” channels), which reduce fast-inactivation gate binding, and/or by the site-3 toxin ATX-II, which interferes with DIV movement. In wild-type channels, the β4 peptide competed poorly with fast inactivation, but block was enhanced by ATX. With the CW mutation, large peptide-induced resurgent currents were present even without ATX, consistent with increased open-channel block upon depolarization and slower deactivation after blocker unbinding upon repolarization. The addition of ATX greatly increased transient current amplitudes and further enlarged resurgent currents, suggesting that pore access by the blocker is actually decreased by full deployment of the DIV voltage sensor. ATX accelerated recovery from block at hyperpolarized potentials, however, suggesting that the peptide unbinds more readily when DIV voltage-sensor deployment is disrupted. These results are consistent with two open states in Na channels, dependent on the DIV voltage-sensor position, which differ in affinity for the blocking protein.  相似文献   
7.
The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system.  相似文献   
8.
It is increasingly understood that gastrointestinal (GI) methanogens, including Methanobrevibacter smithii, influence host metabolism.

Objective:

Therefore, we compared M. smithii colonization and weight gain in a rat model under different dietary conditions.

Design and Methods:

Sprague‐Dawley rats were inoculated with M. smithii or vehicle (N = 10/group), fed normal chow until day 112 postinoculation, high‐fat chow until day 182, then normal chow until day 253. Thereafter, five rats from each group were fed high‐fat and normal chow until euthanasia.

Results:

Both groups exhibited M. smithii colonization, which increased following inoculation only for the first 9 days. Change to high‐fat chow correlated with significant increases in weight (P < 0.00001) and stool M. smithii (P < 0.01) in all rats, with stool M. smithi decreasing on return to normal chow. Rats switched back to high‐fat on day 253 further increased weight (P < 0.001) and stool M. smithii (P = 0.039). Euthanasia revealed all animals had higher M. smithii, but not total bacteria, in the small intestine than in the colon. Rats switched back to high‐fat chow had higher M. smithii levels in the duodenum, ileum, and cecum than those fed normal chow; total bacteria did not differ in any bowel segment. Rats which gained more weight had more bowel segments colonized, and the lowest weight recorded was in a rat on high‐fat chow which had minimal M. smithii colonization.

Conclusions:

We conclude that M. smithii colonization occurs in the small bowel as well as in the colon, and that the level and extent of M. smithii colonization is predictive of degree of weight gain in this animal model.  相似文献   
9.

Background

50% of leprosy patients suffer from episodes of Type 1/ reversal reactions (RR) and Type 2/ Erythema Nodosum Leprosum (ENL) reactions which lead to morbidity and nerve damage. CD4+ subsets of Th17 cells and CD25+FOXP3+ regulatory T cells (Tregs) have been shown to play a major role in disease associated immunopathology and in stable leprosy as reported by us and others. The aim of our study was to analyze their role in leprosy reactions.

Methodology and Principle Findings

Quantitative reverse transcribed PCR (qPCR), flowcytometry and ELISA were used to respectively investigate gene expression, cell phenotypes and supernatant levels of cytokines in antigen stimulated PBMC cultures in patients with stable disease and those undergoing leprosy reactions. Both types of reactions are associated with significant increase of Th17 cells and associated cytokines IL-17A, IL-17F, IL-21, IL-23 and chemokines CCL20, CCL22 as compared to matching stable forms of leprosy. Concurrently patients in reactions show reduction in FOXP3+ Treg cells as well as reduction in TGF-β and increase in IL-6. Moreover, expression of many T cell markers, cytokines, chemokines and signaling factors were observed to be increased in RR as compared to ENL reaction patients.

Conclusions

Patients with leprosy reactions show an imbalance in Th17 and Treg populations. The reduction in Treg suppressor activity is associated withhigherTh17cell activity. The combined effect of reduced TGF-β and enhanced IL-6, IL-21 cytokines influence the balance between Th17 or Treg cells in leprosy reactions as reported in the murine models and autoimmune diseases. The increase in Th17 cell associated cytokines may contribute to lesional inflammation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号