全文获取类型
收费全文 | 90篇 |
免费 | 1篇 |
专业分类
91篇 |
出版年
2021年 | 3篇 |
2020年 | 1篇 |
2016年 | 2篇 |
2015年 | 3篇 |
2014年 | 2篇 |
2013年 | 10篇 |
2012年 | 7篇 |
2011年 | 6篇 |
2010年 | 4篇 |
2009年 | 6篇 |
2008年 | 8篇 |
2007年 | 6篇 |
2006年 | 1篇 |
2005年 | 1篇 |
2004年 | 2篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 5篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 3篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1971年 | 2篇 |
排序方式: 共有91条查询结果,搜索用时 0 毫秒
1.
Cecilia Brunhoff Nigel G. Yoccoz Rolf A. Ims Maarit Jaarola 《Journal of Biogeography》2006,33(12):2136-2144
Aim It has been proposed that the root vole subspecies, Microtus oeconomus finmarchicus, survived the last glacial period on islands on the north‐west coast of Norway. The Norwegian island of Andøya may have constituted the only site with permanent ice‐free conditions. Geological surveys and fossil finds from Andøya demonstrate that survival throughout the last glacial maximum was probably possible for some plants and animals. In this study we aim to infer the recent evolutionary history of Norwegian root vole populations and to evaluate the glacial survival hypothesis. Methods DNA sequence variation in the mitochondrial cytochrome b gene was studied in 46 root voles from 19 localities. Location Northern Fennoscandia and north‐west Russia with a focus on islands on the north‐west coast of Norway. Results The phylogeographical analyses revealed two North European phylogroups labelled ‘Andøya’ and ‘Fennoscandia’. The Andøya phylogroup contained root voles from the Norwegian islands of Andøya, Ringvassøya and Reinøya and two localities in north‐west Russia. The Fennoscandian phylogroup encompassed root voles from the three Norwegian islands of Kvaløya, Håkøya and Arnøya and the remaining specimens from Norway, northern Sweden and Finland. Nucleotide diversity within the Andøya and Fennoscandian phylogroups was similar, ranging from 0.5% to 0.7%. Main conclusions Both our genetic data and previously published morphological data are consistent with in situ glacial survival of root voles on Andøya during the last glacial maximum. However, the level of genetic diversity observed in the extant island populations, the past periods of severe climatic conditions on Andøya and the ecology of the root vole are somewhat difficult to reconcile with this model. A biogeographical scenario involving late glacial recolonization along the northern coasts of Russia and Norway therefore represents a viable alternative. Our results demonstrate that complex recolonization and extinction histories can generate intricate phylogeographical patterns and relatively high levels of genetic variation in northern populations. 相似文献
2.
Question: Different plant growth forms may have distinctly different functioning in ecosystems. Association of phenological patterns with growth form will therefore help elucidate the role of phenology in an ecosystem. We ask whether growth forms of common vascular plants differ in terms of vegetative and flowering phenology, and if such phenological differences are consistent across environmental gradients caused by landscape‐scale topography. Location: A high‐latitude alpine landscape in Finnmark County, Norway (70°N). Methods: We assessed vegetative and flowering phenology repeatedly in five growth forms represented by 11 common vascular plant species across an altitudinal gradient and among differing slope aspects. Results: Species phenology clustered well according to growth form, and growth form strongly explained variation in both flowering and vegetative phenology. Altitude and aspect were poor predictors of phenological variation. Vegetative phenology of the growth forms, ranked from slowest to fastest, was in the order evergreen shrubs <sedges‐deciduous shrubs <grasses <forbs, while a reverse ranking was found for flowering phenology. Conclusion: Growth form‐specific phenological patterns are associated with fundamentally different abilities for resource acquisition and resource conservation. The weak effect of landscape‐scale topographic factors indicates that variation within growth forms is mainly influenced by local environmental factors not accounted for in this study. On the basis of these results, we argue that growth forms should be considered as predictors of phenology together with the customary use of topography and normalized difference vegetation index, especially when assessing the role of phenology in an ecosystem. 相似文献
3.
4.
Since the first documentation of climate-warming induced declines in arctic sea-ice, predictions have been made regarding the expected negative consequences for endemic marine mammals. But, several decades later, little hard evidence exists regarding the responses of these animals to the ongoing environmental changes. Herein, we report the first empirical evidence of a dramatic shift in movement patterns and foraging behaviour of the arctic endemic ringed seal (Pusa hispida), before and after a major collapse in sea-ice in Svalbard, Norway. Among other changes to the ice-regime, this collapse shifted the summer position of the marginal ice zone from over the continental shelf, northward to the deep Arctic Ocean Basin. Following this change, which is thought to be a ‘tipping point’, subadult ringed seals swam greater distances, showed less area-restricted search behaviour, dived for longer periods, exhibited shorter surface intervals, rested less on sea-ice and did less diving directly beneath the ice during post-moulting foraging excursions. In combination, these behavioural changes suggest increased foraging effort and thus also likely increases in the energetic costs of finding food. Continued declines in sea-ice are likely to result in distributional changes, range reductions and population declines in this keystone arctic species. 相似文献
5.
Populations of many species are spatially structured in matrilines, and their dynamics may be determined by matriline specific demographic processes. We examined whether the isolation of habitat patches (i.e. interpatch distance) affected the demography of matrilines in 14 experimentally fragmented populations of the root vole. Matrilines inhabiting the most isolated patches decreased in size over the breeding season, while matrilines in less isolated patches increased. The survival rate of adult females was the main factor underlying the variation in growth rates among matrilines. Low survival when patches were isolated seemed to be due to long-distance interpatch movements exposing females to increased predation rate.
The differential success of matrilines in patchy populations with variable interpatch distances acted to decrease the matrilineal diversity at the population level. Furthermore, isolated patches may function as sinks. Thus spatially explicit landscape features may affect both population demography and genetics. 相似文献
The differential success of matrilines in patchy populations with variable interpatch distances acted to decrease the matrilineal diversity at the population level. Furthermore, isolated patches may function as sinks. Thus spatially explicit landscape features may affect both population demography and genetics. 相似文献
6.
Climatic change is expected to affect the extent and severity of geometrid moth outbreaks, a major disturbance factor in sub-arctic birch forests. Previous studies have reported that the two geometrid species involved, autumnal moth and winter moth, differ in their temperature requirements and, consequently, in their altitudinal and latitudinal distribution patterns. In this study, we document the altitudinal distribution of winter moth outbreaks in a large coastal area in northern Norway. We show that, in the present winter moth outbreak, defoliated birch stands were seen as distinct zones with a rather constant width in the uppermost part of the forest and where the upper limit coincided with the forest line. The outbreak zone closely followed the spatially variable forest line as an undulating belt, although some of the variation in outbreak zone width was also related to variation in topographical variables, such as distance from the coast, forest line altitude, and slope of the terrain. A distinct outbreak zone at the altitudinal forest line is the typical picture that has been depicted in more qualitative historical records on previous outbreaks of autumnal moth rather than winter moth. We suggest that the recent documented climate warming in this region may have induced a shift in distribution of the winter moth both relative to topography and geography. Further investigation is, however, required to substantiate these suspicions. 相似文献
7.
Collapsing population cycles 总被引:1,自引:0,他引:1
During the past two decades population cycles in voles, grouse and insects have been fading out in Europe. Here, we discuss the cause and implication of these changes. Several lines of evidence now point to climate forcing as the general underlying cause. However, how climate interacts with demography to induce regime shifts in population dynamics is likely to differ among species and ecosystems. Herbivores with high-amplitude population cycles, such as voles, lemmings, snowshoe hares and forest Lepidoptera, form the heart of terrestrial food web dynamics. Thus, collapses of these cycles are also expected to imply collapses of important ecosystem functions, such as the pulsed flows of resources and disturbances. 相似文献
8.
John‐André Henden Rolf A. Ims Nigel G. Yoccoz Peter Hellström Anders Angerbjörn 《Oikos》2010,119(1):27-34
In food webs heavily influenced by multi‐annual population fluctuations of key herbivores, predator species may differ in their functional and numerical responses as well as their competitive ability. Focusing on red and arctic fox in tundra with cyclic populations of rodents as key prey, we develop a model to predict how population dynamics of a dominant and versatile predator (red fox) impacted long‐term growth rate of a subdominant and less versatile predator (arctic fox). We compare three realistic scenarios of red fox performance: (1) a numerical response scenario where red fox acted as a resident rodent specialist exhibiting population cycles lagging one year after the rodent cycle, (2) an aggregative response scenario where red fox shifted between tundra and a nearby ecosystem (i.e. boreal forest) so as to track rodent peaks in tundra without delay, and (3) a constant subsidy scenario in which the red fox population was stabilized at the same mean density as in the other two scenarios. For all three scenarios it is assumed that the arctic fox responded numerically as a rodent specialist and that the mechanisms of competition is of a interference type for space, in which the arctic fox is excluded from the most resource rich patches in tundra. Arctic fox is impacted most by the constant subsidy scenario and least by the numerical response scenario. The differential effects of the scenarios stemmed from cyclic phase‐dependent sensitivity to competition mediated by changes in temporal mean and variance of available prey to the subdominant predator. A general implication from our result is that external resource subsidies (prey or habitats), monopolized by the dominant competitor, can significantly reduce the likelihood for co‐existence within the predator guild. In terms of conservation of vulnerable arctic fox populations this means that the likelihood of extinction increases with increasing amount of subsidies (e.g. carcasses of large herbivores or marine resources) in tundra and nearby forest areas, since it will act to both increase and stabilize populations of red fox. 相似文献
9.
Ims RA 《Trends in ecology & evolution》1990,5(5):135-140
The temporal pattern of breeding in populations is often characterized by a pronounced temporal clustering of births, flowering or seed set. It has long been suspected that this phenomenon is not caused by climatic seasonality alone but that reproductive synchrony represents a strategy that individuals adopt to maximize reproductive success. The classical hypotheses predicting an adaptive advantage of reproductive synchrony incorporate both sociobiological and ecological explanations. However, new theoretical and empirical analyses have shown that the predicted advantage of reproductive synchrony depends on the ecological setting in which populations reproduce, and processes earlier thought to be responsible only for synchrony may under some ecological conditions lead to asynchronous reproduction being the best strategy. 相似文献
10.
A peak density population of Clethrionomys glareolus was studied by snap-trapping to determine by experimentation whether spacing behaviour regulated the breeding density. On control plots onset of reproduction was asynchronous, litter size of overwintered females decreased significantly during the summer and no year-born animals matured during the reproductive period. A removal experiment in the early summer resulted in sexual maturation of year-born females. A second removal in late summer indicated an inhibition of maturation in year-born females despite continued intense reproduction of overwintered females. We conclude that spacing behaviour regulated maturation of females early in the summer but other factors, such as food quality, limited maturation in late summer. 相似文献