首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   5篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   5篇
  2009年   2篇
  2008年   8篇
  2007年   9篇
  2006年   9篇
  2005年   8篇
  2004年   9篇
  2003年   11篇
  2002年   7篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
1.
The immunological properties of the group B meningococcal alpha(2-8)-linked sialic acid polysaccharide have been rationalized in terms of a model where the random coil nature of the polymer can be described by the presence of local helices. The conformational versatility of the alpha NeuAc(2-8)alpha NeuAc linkage has been explored by NMR studies at 600 MHz in conjunction with potential energy calculations for colominic acid, an alpha(2-8)NeuAc polymer, and the trisaccharide alpha NeuAc(2-8)alpha NeuAc(2-8)beta NeuAc. Potential energy calculations were used to estimate the energetically favorable conformers and to describe the wide range of helices which the polymer can adopt. No unique conformer was found to satisfy all NMR constraints, and only ensemble averaged nuclear Overhauser enhancements could correctly simulate the experimental data. Conformational differences between the polymer and the trisaccharide could be best explained in terms of slight changes in the relative distribution of conformers in solution. Similar helical parameters for the alpha(2-8)NeuAc polymer and poly(A) were proposed as the basis for their cross-reactivity to a monoclonal antibody IgMNOV. The unusual length dependency for binding of oligosaccharide to group B specific antibodies was postulated to arise from the recognition of a high-order local helix with an extended conformation which was not highly populated in solution.  相似文献   
2.
The three-dimensional structure ofDolichos biflorus seed lectin has been constructed using five legume lectins for which high resolution crystal structures were available. The validity of the resulting model has been thoroughly investigated. Final structure optimization was conducted for the lectin complexed with GalNAc, providing thereby the first three-dimensional structure of lectin/GalNAc complex. The role of theN-acetyl group was clearly evidenced by the occurrence of a strong hydrogen bond between the protein and the carbonyl oxygen of the carbohydrate and by hydrophobic interaction between the methyl group and aromatic amino acids. Since the lectin specificity is maximum for the Forssman disaccharide GalNAc(1–3)GalNAc-O-Me and the blood group A trisaccharide GalNAc(1–3)[Fuc(1–2)]Gal-O-Me, the complexes with these oligosaccharides have been also modelled.  相似文献   
3.
The blocking potency of P- and L-selectin was studied for certain small molecule mannosides and their polyacrylamide (PAA, 30 kDa) conjugates in comparison to SiaLe(x) and fucoidan. Two experimental systems were used: (1) solid phase static assay based on recombinant selectins, and (2) P-selectin dependent rat peritoneal inflammation. betaMan-SC6H4NO2- p was four times more potent P-selectin inhibitor as compared to SiaLe(x). Docking of this molecule onto the P-selectin carbohydrate-binding site demonstrated that a nitro group enabled an electrostatic interaction with residue Lys 84, while the phenyl ring and the CH2 at C-6 contacted the CH2 groups of the same Lys residue. In vivo, betaMan-SC6H4NO2- p blocked experimental inflammation better than SiaLe(x), but significantly lower than fucoidan. In vitro Man-polyacrylic acid conjugates appeared to be very potent inhibitors comparable to fucoidan, uncharged Man-PAA proved rather active, comparable to SiaLe(x)-PAA both in vitro, and in vivo, whereas mannan did not display any P-selectin blocking effect.  相似文献   
4.
The opportunistic human pathogen Psuedomonas aeruginosa produces two lectins in close association with virulence factors: PA-IL adn PA-IIL, which bind to galactose- and fucose/mannose-containing glycoconjugates, respectively. We review here the structural aspects of these lectins relative to their putative roles in host recognition, cell surface adhesion and biofilm formation.  相似文献   
5.
The synthesis of sufficient amounts of oligosaccharides is the bottleneck for the study of their biological function and their possible use as drug. As an alternative for chemical synthesis, we propose to use Escherichia coli as a "living factory." We have addressed the production of the Galp alpha(1-3)Galp beta(1-4)GlcNAc epitope, the major porcine antigen responsible for xenograft rejection. An E. coli strain was generated which simultaneously expresses NodC (to provide the chitin-pentaose acceptor), beta(1-4) galactosyltransferase LgtB, and bovine alpha(1-3) galactosyltransferase GstA. This strain produced 0.68 g/L of the heptasaccharide Galp alpha(1-3)Galp beta(1-4)(GlcNAc)(5), which harbours the xenoantigen at its non-reducing end, establishing the feasibility of this approach.  相似文献   
6.
Chondroitin and chondroitin sulfates belong to the family of glycosaminoglycans. They are most widely distributed in animal tissues, where they are involved in structural functions and in cell-cell communication. Their basic structures consist of a disaccharidic repeating unit of beta-D-glucuronic acid (GlcA) and 2-acetamido-2-deoxy-beta-D-galactose (GalNAc), this latter being sulfated at different positions. Molecular mechanics has been applied to calculate the adiabatic energy maps for each of the constituting disaccharides of chondroitin, chondroitin 4-sulfate, and chondroitin 6-sulfate using the MM3 force field. Based on these maps, higher levels of structural organization have been simulated. On one hand, the disordered state is studied through a Metropolis-based algorithm; the resulting chains present a behavior of semirigid polymers, with an order of stiffness: chondroitin 4-sulfate > chondroitin > chondroitin 6-sulfate. On the other hand, the exploration of the stable ordered forms leads to numerous helical conformations of comparable energies. Several of these conformations correspond to the experimentally observed ones. The ability of coordination with cations has also been explored, resulting in a preferential stereospecificity for calcium ions when compared to sodium ions.  相似文献   
7.
To study the role of LecRK (lectin-like receptor kinase) genes in the legumerhizobia symbiosis, we have characterized the four Medicago truncatula Gaernt. LecRK genes that are most highly expressed in roots. Three of these genes, MtLecRK7;1, MtLecRK7;2, and MtLecRK7;3, encode proteins most closely related to the Class A LecRKs of Arabidopsis, whereas the protein encoded by the fourth gene, MtLecRK1;1, is most similar to a Class B Arabidopsis LecRK. All four genes show a strongly enhanced root expression, and detailed studies on MtLecRK1;1 and MtLecRK7;2 revealed that the levels of their mRNAs are increased by nitrogen starvation and transiently repressed after either rhizobial inoculation or addition of lipochitooligosaccharidic Nod factors. Studies of the MtLecRK1;1 and MtLecRK7;2 proteins, using green fluorescent protein fusions in transgenic M. truncatula roots, revealed that they are located in the plasma membrane and that their central transmembrane-spanning helix is required for correct sorting. Moreover, their lectin-like domains appear to be highly glycosylated. Of the four proteins, only MtLecRK1;1 shows a high conservation of key residues implicated in monosaccharide binding, and molecular modeling revealed that this protein may be capable of interacting with Nod factors. However, no increase in Nod factor binding was found in roots overexpressing a fusion in which the kinase domain of this protein had been replaced with green fluorescent protein. Roots expressing this fusion protein however showed an increase in nodule number, suggesting that expression of MtLecRK1;1 influences nodulation. The potential role of LecRKs in the legume-rhizobia symbiosis is discussed.  相似文献   
8.
A terminal alpha1-3 linked Gal or GalNAc sugar residue is the common structure found in several oligosaccharide antigens, such as blood groups A and B, the xeno-antigen, the Forssman antigen, and the isogloboside 3 (iGb3) glycolipid. The enzymes involved in the addition of this residue display strong amino acid sequence similarities, suggesting a common fold. From a recently solved crystal structure of the bovine alpha3-galactosyltransferase complexed with UDP, homology modeling methods were used to build the four other enzymes of this family in their locked conformation. Nucleotide-sugars, the Mn2+ ion, and oligosaccharide acceptors were docked in the models. Nine different amino acid regions are involved in the substrate binding sites. After geometry optimization of the complexes and analysis of the predicted structures, the basis of the specificities can be rationalized. In the nucleotide-sugar binding site, the specificity between Gal or GalNAc transferase activity is due to the relative size of two clue amino acids. In the acceptor site, the presence of up to three tryptophan residues define the complexity of the oligosaccharide that can be specifically recognized. The modeling study helps in rationalizing the crystallographic data obtained in this family and provides insights on the basis of substrate and donor recognition.  相似文献   
9.
The crystal structure of Pterocarpus angolensis seed lectin is presented in complex with a series of high mannose (Man) oligosaccharides ranging from Man-5 to Man-9. Despite that several of the nine Man residues of Man-9 have the potential to bind in the monosaccharide-binding site, all oligomannoses are bound in the same unique way, employing the tetrasaccharide sequence Manalpha(1-2)Manalpha(1-6)[Manalpha(1-3)]Manalpha(1-. Isothermal titration calorimetry titration experiments using Man-5, Man-9, and the Man-9-containing glycoprotein soybean (Glycine max) agglutinin as ligands confirm the monovalence of Man-9 and show a 4-times higher affinity for Man-9 when it is presented to P. angolensis seed lectin in a glycoprotein context.  相似文献   
10.
N-glycolyl GM1 ganglioside as a receptor for simian virus 40   总被引:1,自引:0,他引:1       下载免费PDF全文
Carbohydrate microarrays have emerged as powerful tools in analyses of microbe-host interactions. Using a microarray with 190 sequence-defined oligosaccharides in the form of natural glycolipids and neoglycolipids representative of diverse mammalian glycans, we examined interactions of simian virus 40 (SV40) with potential carbohydrate receptors. While the results confirmed the high specificity of SV40 for the ganglioside GM1, they also revealed that N-glycolyl GM1 ganglioside [GM1(Gc)], which is characteristic of simian species and many other nonhuman mammals, is a better ligand than the N-acetyl analog [GM1(Ac)] found in mammals, including humans. After supplementing glycolipid-deficient GM95 cells with GM1(Ac) and GM1(Gc) gangliosides and the corresponding neoglycolipids with phosphatidylethanolamine lipid groups, it was found that GM1(Gc) analogs conferred better virus binding and infectivity. Moreover, we visualized the interaction of NeuGc with VP1 protein of SV40 by molecular modeling and identified a conformation for GM1(Gc) ganglioside in complex with the virus VP1 pentamer that is compatible with its presentation as a membrane receptor. Our results open the way not only to detailed studies of SV40 infection in relation to receptor expression in host cells but also to the monitoring of changes that may occur with time in receptor usage by the virus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号