首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   6篇
  国内免费   1篇
  2023年   3篇
  2022年   9篇
  2021年   6篇
  2020年   12篇
  2019年   8篇
  2018年   5篇
  2017年   6篇
  2016年   12篇
  2015年   10篇
  2014年   19篇
  2013年   10篇
  2012年   25篇
  2011年   27篇
  2010年   15篇
  2009年   11篇
  2008年   13篇
  2007年   13篇
  2006年   19篇
  2005年   13篇
  2004年   16篇
  2003年   13篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1992年   1篇
  1991年   1篇
排序方式: 共有286条查询结果,搜索用时 31 毫秒
1.
The changes of immunoglobulin-G and creatinine levels in mid-altitude were investigated in rabbits. The animals living at sea level were exposed to 2240 m altitude for 22 days period. When compared with sea level values; immunoglobulin-G levels were significantly low. Serum creatinine level decreased significantly in the 2nd day, then reached the sea level amount on the 12th day. On the 22nd day a significant increase was observed. It was concluded that the decrease in immunoglobulin-G values may be due to the depression of protein synthesis. The increase in plasma creatinine level would be explained by the decrease in urine.  相似文献   
2.
The body can host the spread of prostate cancer cells. Metastases from prostate cancer are more frequently seen in the brain, liver, lungs, and lymph nodes. A well-known antidiabetic drug, metformin, is also known to have antitumor effects. Our study focuses on the evaluation of potential metformin protective effects on brain and cerebellum damage in streptozotocin (STZ)-induced diabetic and Dunning prostate cancer models. In this investigation, six groups of male Copenhagen rats were created: control, diabetic (D), cancer (C), diabetic + cancer (DC), cancer + metformin, and diabetic + cancer + metformin. The brain and cerebellum tissues of the rats were taken after sacrifice. Oxidative stress markers including reduced glutathione level, lipid peroxidation, glutathione reductase, glutathione peroxidase, glutathione-S-transferase, catalase, superoxide dismutase activities, reactive oxygen species, total oxidant and total antioxidant status, lactate dehydrogenase, xanthine oxidase, acetylcholinesterase activities, protein carbonyl contents, nitric oxide and OH-proline levels, sodium potassium ATPase, carbonic anhydrase, and glucose-6-phosphate dehydrogenase activities; glycoprotein levels including hexose, hexosamine, fucose, and sialic acid levels; and histone deacetylase activity as a cancer marker were determined. Oxidative stress markers were impaired and glycoprotein levels and histone deacetylase activity were increased in the D, C, and DC groups. Metformin therapy reversed these effects. Metformin was found to protect the brain and cerebellum of STZ-induced diabetic rats with Dunning prostate cancer from harm caused by MAT-Lylu metastatic cells.  相似文献   
3.
4.
The ER‐bound kinase/endoribonuclease (RNase), inositol‐requiring enzyme‐1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1’s one known, specific RNA target, X box‐binding protein‐1 (XBP1) or the RNA substrates of IRE1‐dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide‐derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross‐talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1’s RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3) 5‐phosphatase‐2 (INPPL1) is a direct target of miR‐2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3/PIP2 ratio and anabolic mTOR signaling by the IRE1‐induced miR‐2137 demonstrates how the ER can provide a critical input into cell growth decisions.  相似文献   
5.
Abstract

In this study, bacteria were isolated from two different magnesite quarries in Turanocak and Ortaocak mine in Kütahya-Eski?ehir region, one of the largest processed magnesite reserves in Turkey. The obtained isolates have a potential to solve important magnesite pollutant CaCO3 but incapable to solve magnesium that has the most crucial role in the industry. Thus, potential bacteria were identified to be used for magnesite enrichment studies. The obtained isolates were identified and characterized according to the morphological, physiological, biochemical, and molecular techniques (16S rDNA PCR). According to the gene sequencing analysis Bacillus genus bacteria have the ability to solve CaCO3. The data of the 16S rDNA gene sequence showed that there were 13 active strains grouped in Bacillus. These active strains; Bacillus sp (3), Bacillus atrophaeus (2), Bacillus thuringiensis (1), Bacillus circulans (1), Bacillus simplex (3), Bacillus endophyticus (1) Bacillus drentensis (1) and Bacillus idriensis (1).  相似文献   
6.
7.
New aziridine 2‐phosphonic acids were prepared by monohydrolysis of the aziridine 2‐phosphonates that were obtained by the modified Gabriel?Cromwell reaction of vinyl phosphonate or α‐tosylvinyl phosphonate with a primary amine or a chiral amine. The cellular cytotoxicity of these compounds was tested against the HCT‐116 colorectal cancer cell lines and the CCD‐18Co normal colon fibroblast lines using the MTT assay. Three of the synthesized phosphonic acid derivatives 2e (ethyl hydrogen {(2S)‐1‐[(1S)‐1‐(naphthalen‐2‐yl)ethyl]aziridin‐2‐yl}phosphonate), 2h (ethyl hydrogen (1‐benzylaziridin‐2‐yl)phosphonate), and 2i (ethyl hydrogen (1‐cyclohexylaziridin‐2‐yl)phosphonate) showed higher cytotoxicity than the reference cancer treatment agent etoposide. Cell death was through a robust induction of apoptosis even more effectively than etoposide, a well‐known apoptosis inducing agent.  相似文献   
8.
Signal peptidase functions to cleave signal peptides from preproteins at the cell membrane. It has a substrate specificity for small uncharged residues at -1 (P1) and aliphatic residues at the -3 (P3) position. Previously, we have reported that certain alterations of the Ile-144 and Ile-86 residues in Escherichia coli signal peptidase I (SPase) can change the specificity such that signal peptidase is able to cleave pro-OmpA nuclease A in vitro after phenylalanine or asparagine residues at the -1 position (Karla, A., Lively, M. O., Paetzel, M. and Dalbey, R. (2005) J. Biol. Chem. 280, 6731-6741). In this study, screening of a fluorescence resonance energy transfer-based peptide library revealed that the I144A, I144C, and I144C/I86T SPase mutants have a more relaxed substrate specificity at the -3 position, in comparison to the wild-type SPase. The double mutant tolerated arginine, glutamine, and tyrosine residues at the -3 position of the substrate. The altered specificity of the I144C/I86T mutant was confirmed by in vivo processing of pre-beta-lactamase containing non-canonical arginine and glutamine residues at the -3 position. This work establishes Ile-144 and Ile-86 as key P3 substrate specificity determinants for signal peptidase I and demonstrates the power of the fluorescence resonance energy transfer-based peptide library approach in defining the substrate specificity of proteases.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号