首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   10篇
  2023年   8篇
  2022年   4篇
  2021年   8篇
  2020年   8篇
  2019年   9篇
  2018年   11篇
  2017年   14篇
  2016年   14篇
  2015年   11篇
  2014年   20篇
  2013年   24篇
  2012年   22篇
  2011年   14篇
  2010年   14篇
  2009年   6篇
  2008年   23篇
  2007年   32篇
  2006年   28篇
  2005年   21篇
  2004年   15篇
  2003年   15篇
  2002年   16篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1996年   2篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有357条查询结果,搜索用时 93 毫秒
1.
Protoplasma - Watermelon and melon are members of the Cucurbitaceae family including economically significant crops in the world. The expansin protein family, which is one of the members of the...  相似文献   
2.
In this study, three new axially disubstituted silicon phthalocyanines ( SiPc1–3 ) and their quaternized phthalocyanine derivatives ( QSiPc1–3 ) were prepared and characterized. The biological properties (antioxidant, antimicrobial, antibiofilm, and microbial cell viability activities) of the water-soluble silicon phthalocyanines were examined, as well. A 1 % DMSO diluted with pure water was used as a solvent in biological activity studies. All the compounds exhibited high antioxidant activity. They displayed efficient antimicrobial and antimicrobial photodynamic therapeutic properties against various microorganisms, especially Gram (+) bacteria. Additionally, they demonstrated high antibiofilm activities against S. aureus and P. aeruginosa. In addition, 100 % bacterial reduction was obtained for all the studied phthalocyanines against E. coli viable cells. Besides, the DNA cleavage and binding features of compounds ( QSiPc1–3 ) were studied using pBR322 DNA and CT-DNA, respectively. Furthermore, the human topoisomerase I enzyme inhibition activities of compounds QSiPc1 – 3 were studied. Anticancer properties of the water-soluble compounds were investigated using cell proliferation MTT assay. They exhibited anticarcinogenic activity against the human colon cancer cell line (DLD-1). Compounds QSiPc1 and QSiPc3 displayed a high anticarcinogenic effect on the DLD-1 cell line. The obtained results indicated that all the studied compounds may be effective biological agents and anticancer drugs after further investigations.  相似文献   
3.
In this study, a new phthalonitrile derivative namely 4-[(2,4-difluorophenyl)ethynyl]phthalonitrile ( 1 ) and its metal phthalocyanines ( 2 and 3 ) were synthesized. The resultant compounds were conjugated to silver nanoparticles and characterized using transmission electron microscopy (TEM) images. The biological properties of compounds ( 1 – 3 ), their nanoconjugates ( 4 – 6 ), and silver nanoparticles ( 7 ) were examined for the first time in this study. The antioxidant activities of biological candidates ( 1 – 7 ) were studied by applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The highest antioxidant activity was obtained 97.47 % for 200 mg/L manganese phthalocyanine-silver nanoconjugates ( 6 ). The antimicrobial and antimicrobial photodynamic therapy (APDT) activities of biological candidates ( 1 – 7 ) were examined using a micro-dilution assay. The highest MIC value was obtained 8 mg/L for nanoconjugate 6 against E. hirae. The studied compounds and their silver nanoconjugates exhibited high APDT activities against all the studied microorganisms. The most effective APDT activities were obtained 4 mg/L for nanoconjugates ( 5 and 6 ) against L. pneumophila and E. hirae, respectively. All the studied biological candidates displayed high cell viability inhibition activities against E. coli cell growth. The biofilm inhibition activities of the tested biological candidates were also investigated against S. aureus and P. Aeruginosa. Biological candidates ( 1 – 6 ) can be considered efficient metal nanoparticle-based materials for multi-disciplinary biological applications.  相似文献   
4.
In this work, the synthesis, characterization, and biological activities of a new series of 1,3,4-thiadiazole derivatives were investigated. The structures of final compounds were identified using 1H-NMR, 13C-NMR, elemental analysis, and HRMS. All the new synthesized compounds were then screened for their antimicrobial activity against four types of pathogenic bacteria and one fungal strain, by application of the MIC assays, using Ampicilin, Gentamycin, Vancomycin, and Fluconazole as standards. Among the compounds, the MIC values of 4 and 8 μg/mL of the compounds 3f and 3g , respectively, are remarkable and indicate that these compounds are good candidates for antifungal activity. The docking experiments were used to identify the binding forms of produced ligands with sterol 14-demethylase to acquire insight into relevant proteins. The MD performed about 100 ns simulations to validate selected compounds’ theoretical studies. Finally, using density functional theory (DFT) to predict reactivity, the chemical characteristics and quantum factors of synthesized compounds were computed. These results were then correlated with the experimental data. Furthermore, computational estimation was performed to predict the ADME properties of the most active compound 3f .  相似文献   
5.

The metabolic syndrome (MetS) and pathologies associated with metabolic dysregulations a worldwide growing problem. Our previous study demonstrated that pioglitazone (PGZ) has beneficial effects on metabolic syndrome associated disturbances in the heart. However, mechanism mediating the molecular alterations of Ubiquitin proteasome system (UPS) and autophagy has not been investigated in rat pancreas with metabolic syndrome. For this reason, we first aimed to detect whether MetS effects on the expression of UPS (p97/VCP, SVIP, Ubiquitin) and autophagic (p62, LC3) proteins in rat pancreas. The second aim of the study was to find impact of pioglitazone on the expression of UPS and autophagic proteins in MetS rat pancreas. To answer these questions, metabolic syndrome induced rats were used as a model and treated with pioglitazone for 2 weeks. Pancreatic tissue injuries, fibrosis and lipid accumulation were evaluated histopathologically in control, MetS and MetS-PGZ groups. Apoptosis and cell proliferation of pancreatic islet cells were assessed in all groups. UPS and autophagic protein expressions of pancreas in all groups were detected by using immunohistochemistry, double-immunfluorescence and Western blotting. Compared with the controls, the rat fed with high sucrose exhibited signs of metabolic syndrome, such as higher body weight, insulin resistance, higher triglyceride level and hyperglycaemia. MetS rats showed pancreatic tissue degeneration, fibrosis and lipid accumulation when their pancreas were examined with Hematoxilen-eozin and Mallory trichrome staining. Metabolic, histopathologic parameters and cell proliferation showed greater improvement in MetS-PGZ rats and pioglitazone decreased apoptosis of islet cells. Moreover, SVIP, ubiquitin, LC3 and p62 expressions were significantly increased while only p97/VCP expression was significantly decreased in MetS-rat pancreas compared to control. PGZ treatment significantly decreased the MetS-induced increases in autophagy markers. Additionally, UPS and autophagy markers were found to colocalizated with insulin and glucagon. Colocalization ratio of UPS markers with insulin showed significant decrease in MetS rats and PGZ increased this ratio, whereas LC3-insulin colocalization displayed significant increase in MetS rats and PGZ reversed this effect. In conclusion, PGZ improved the pancreatic tissue degeneration by increasing the level of p97/VCP and decreasing autophagic proteins, SVIP and ubiquitin expressions in MetS-rats. Moreover, PGZ has an effect on the colocalization ratio of UPS and autophagy markers with insulin.

  相似文献   
6.
Yilmaz  Şehnaz  Yoldas  Oguz  Dumani  Aysin  Guler  Gizem  Ilgaz  Seda  Akbal  Eylül  Oksuz  Hale  Celik  Ayla  Yilmaz  Bertan 《Molecular biology reports》2020,47(7):5377-5383
Molecular Biology Reports - Antimicrobial irrigation solutions are widely used under clinical settings. Their effect on dental tissue is a subject of recent research, which aims for a safer...  相似文献   
7.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, defined by the presence of resting tremor, muscular rigidity, bradykinesia, and postural instability. PD is characterized by the progressive loss of dopaminergic neurons within the substantia nigra pars compacta of the midbrain. The neuropathological hallmark of the disease is the presence of intracytoplasmic inclusions, called Lewy bodies (LBs) and Lewy neurites (LNs), containing α-synuclein, a small protein which is widely expressed in the brain. The α-synuclein gene, SNCA, is located on chromosome 4q22.1; SNCA-linked PD shows an autosomal dominant inheritance pattern with a relatively early onset age, and it usually progresses rapidly. Three missense mutations, A53T, A30P, and E46K, in addition to gene multiplications of the SNCA have been described so far. Although it is clear that LBs and LNs contain mainly the α-synuclein protein, the mechanism(s) which leads α-synuclein to accumulate needs to be elucidated. The primary question in the molecular pathology of PD is how wild-type α-synuclein aggregates in PD, and which interacting partner(s) plays role(s) in the aggregation process. It is known that dopamine synthesis is a stressfull event, and α-synuclein expression somehow affects the dopamine synthesis. The aberrant interactions of α-synuclein with the proteins in the dopamine synthesis pathway may cause disturbances in cellular mechanisms. The normal physiological folding state of α-synuclein is also important for the understanding of pathological aggregates. Recent studies on the α-synuclein protein and genome-wide association studies of the α-synuclein gene show that PD has a strong genetic component, and both familial and idiopathic PD have a common denominator, α-synuclein, at the molecular level. It is clear that the disease process in Parkinson’s disease, as in other neurodegenerative disorders, is very complicated; there can be several different molecular pathways which are responsible for diverse and possibly also unrelated functions inside the neuron, playing roles in PD pathogenesis.  相似文献   
8.
This article explores the contested meanings of the ‘Asian American’ concept in the US today. Since its emergence in the late 1960s, ‘Asian American’ has been defined by pan-Asian groups and organizations in the US as a collectivity bound by shared racial interests. Contemporary conditions have sharpened and highlighted the inherent contradictions and ambiguities of this conception of ‘Asian American’ as a racial interest group. Especially important have been the shifts in the composition of the Asian American population that followed the immigration reforms of 1965. Contestations of ‘Asian American’ also reflect larger uncertainties about the meaning of race in the US today, in particular, the nature of racial boundaries and racial disadvantage.  相似文献   
9.
Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn2+ additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1−/− neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn2+-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn2+ induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents.  相似文献   
10.
A bioassay-guided phytochemical analysis of the triterpene saponins from under ground parts of Gypsophila arrostii var. nebulosa allowed the isolation of two triterpene saponins; nebuloside A, B based on gypsogenin and quillaic acid aglycone. Two new oleanane type triterpenoid saponins (nebuloside A, B) and three known saponins (13) were isolated from the root bark of Gypsophila arrostii var. nebulosa. The structures of the two new compounds were elucidated as 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyl quillaic acid 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside A) and 3-O-β-d-xylopyranosyl-(1→3)-[β-d-galactopyranosyl(1→3)-β-d-galactopyranosyl-(1→2)]-β-d-glucuronopyranosyl gypsogenin 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside B), on the basis of extensive spectral analysis and chemical evidence. Nebuloside A and B showed toxicity enhancing properties on saporin a type-I RIP without causing toxicity by themselves at 15 μg/mL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号