全文获取类型
收费全文 | 510篇 |
免费 | 14篇 |
专业分类
524篇 |
出版年
2024年 | 4篇 |
2023年 | 5篇 |
2022年 | 3篇 |
2021年 | 11篇 |
2020年 | 9篇 |
2019年 | 4篇 |
2018年 | 11篇 |
2017年 | 10篇 |
2016年 | 14篇 |
2015年 | 18篇 |
2014年 | 29篇 |
2013年 | 30篇 |
2012年 | 40篇 |
2011年 | 42篇 |
2010年 | 27篇 |
2009年 | 16篇 |
2008年 | 43篇 |
2007年 | 31篇 |
2006年 | 25篇 |
2005年 | 27篇 |
2004年 | 17篇 |
2003年 | 24篇 |
2002年 | 26篇 |
2001年 | 8篇 |
2000年 | 7篇 |
1999年 | 7篇 |
1998年 | 4篇 |
1997年 | 4篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 4篇 |
1989年 | 1篇 |
1987年 | 3篇 |
1985年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 2篇 |
排序方式: 共有524条查询结果,搜索用时 15 毫秒
1.
2.
3.
Obesity is associated with an increased risk of cardiomyopathy, and mechanisms linking the underlying risk and dietary factors are not well understood. We tested the hypothesis that dietary intake of saturated fat increases the levels of sphingolipids, namely ceramide and sphingomyelin in cardiac cell membranes that disrupt caveolae, specialized membrane micro-domains and important for cellular signaling. C57BL/6 mice were fed two high-fat diets: palmitate diet (21% total fat, 47% is palmitate), and MCT diet (21% medium-chain triglycerides, no palmitate). We established that high-palmitate feeding for 12 weeks leads to 40% and 50% increases in ceramide and sphingomyelin, respectively, in cellular membranes. Concomitant with sphingolipid accumulation, we observed a 40% reduction in systolic contractile performance. To explore the relationship of increased sphingolipids with caveolins, we analyzed caveolin protein levels and intracellular localization in isolated cardiomyocytes. In normal cardiomyocytes, caveolin-1 and caveolin-3 co-localize at the plasma membrane and the T-tubule system. However, mice maintained on palmitate lost 80% of caveolin-3, mainly from the T-tubule system. Mice maintained on MCT diet had a 90% reduction in caveolin-1. These data show that caveolin isoforms are sensitive to the lipid environment. These data are further supported by similar findings in human cardiac tissue samples from non-obese, obese, non-obese cardiomyopathic, and obese cardiomyopathic patients. To further elucidate the contractile dysfunction associated with the loss of caveolin-3, we determined the localization of the ryanodine receptor and found lower expression and loss of the striated appearance of this protein. We suggest that palmitate-induced loss of caveolin-3 results in cardiac contractile dysfunction via a defect in calcium-induced calcium release. 相似文献
4.
Tallita C.L. Tavares Vanessa L.R. Nogueira Ilka M. Vasconcelos Maura da Cunha Vânia M.M. Melo 《Journal of experimental marine biology and ecology》2011,407(2):200-206
Sea hares are well known, nearly shell-less, marine opisthobranchs that use a complex repertoire of chemicals for defense and communication instead of a conventional gastropod shell. The most conspicuous characteristic of these invertebrates is the secretion of ink, which is rich in bioactive proteins. Many of these proteins belong to a family of L-amino acid oxidases (L-AAOs). In the current study, we aimed to determine whether dactylomelin-P, an antibacterial protein isolated from the ink of Aplysia dactylomela, could act as an L-AAO. We also investigated its biochemical properties and antibacterial mechanism of action. We found that dactylomelin-P is an acidic protein (pI = 5.0), rich in glutamic acid/glutamine, aspartic acid/asparagine, tyrosine, serine, and proline. It was stable under a broad pH range (3.0-12.0), after heating to 55 °C for 30 min, and after treating with protease. Its N-terminal amino acid sequence was DGVCSNRRQCNKEVCGSSYDVAIVGA and showed high similarity to other sea hare proteins previously identified as L-AAOs. The L-AAO activity was confirmed in an enzymatic assay, which showed that dactylomelin-P could oxidize L-lysine and L-arginine. We also demonstrated that the bacteriostatic activity of dactylomelin-P was mediated by hydrogen peroxide generated in the enzymatic reaction, but it acted as a bactericide in the presence of L-lysine and L-arginine. Transmission electron microscopy analyses showed that dactylomelin-P bound to growth-phase bacteria without causing morphological alterations to the cells. The bactericidal effect seems to involve H2O2 and other reactive components since it was not counteracted by H2O2 scavengers. Our findings showed biochemical, functional, and phylogenetic similarities among L-AAOs isolated from sea hares; this offers new insight into the evolution of these proteins and their roles in chemical defense. 相似文献
5.
Background
Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon.Methods
Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running).Results
Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition.Conclusion
Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs. 相似文献6.
The identity of the histidine specific transfer RNA (tRNAHis) is largely determined by a unique guanosine residue at position −1. In eukaryotes and archaea, the tRNAHis guanylyltransferase (Thg1) catalyzes 3′-5′ addition of G to the 5′-terminus of tRNAHis. Here, we show that Thg1 also occurs in bacteria. We demonstrate in vitro Thg1 activity for recombinant enzymes from the two bacteria Bacillus thuringiensis and Myxococcus xanthus and provide a closer investigation of several archaeal Thg1. The reaction mechanism of prokaryotic Thg1 differs from eukaryotic enzymes, as it does not require ATP. Complementation of a yeast thg1 knockout strain with bacterial Thg1 verified in vivo activity and suggests a relaxed recognition of the discriminator base in bacteria. 相似文献
7.
Christoph Dockter Damian Gruszka Ilka Braumann Arnis Druka Ilze Druka Jerome Franckowiak Simon P. Gough Anna Janeczko Marzena Kurowska Joakim Lundqvist Udda Lundqvist Marek Marzec Izabela Matyszczak André H. Müller Jana Oklestkova Burkhard Schulz Shakhira Zakhrabekova Mats Hansson 《Plant physiology》2014,166(4):1912-1927
Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.The introduction of dwarfing genes to increase culm sturdiness of cereal crops was crucial for the first Green Revolution (Hedden, 2003). The culms of tall cereal crops were not strong enough to support the heavy spikes of high-yielding cultivars, especially under high-nitrogen conditions. As a result, plants fell over, a process known as lodging. This caused losses in yield and grain-quality issues attributable to fungal infections, mycotoxin contamination, and preharvest germination (Rajkumara, 2008). Today, a second Green Revolution is on its way, to revolutionize the agricultural sector and to ensure food production for a growing world population. Concurrently, global climate change is expected to cause more frequent occurrences of extreme weather conditions, including thunderstorms with torrential rain and strong winds, thus promoting cereal culm breakage (Porter and Semenov, 2005; National Climate Assessment Development Advisory Committee, 2013). Accordingly, plant architectures that resist lodging remain a major crop-improvement goal and identification of genes that regulate culm length is required to enhance the genetic toolbox in order to facilitate efficient marker-assisted breeding. The mutations and the corresponding genes that enabled the Green Revolution in wheat (Triticum aestivum) and rice (Oryza sativa) have been identified (Hedden, 2003). They all relate to gibberellin metabolism and signal transduction. It is now known that other plant hormones such as brassinosteroids are also involved in the regulation of plant height. Knowledge of the molecular mechanisms underlying the effects of the two hormones on cell elongation and division has mainly come from studies in Arabidopsis (Arabidopsis thaliana; Bai et al., 2012). Mutant-based breeding strategies to fine-tune brassinosteroid metabolism and signaling pathways could improve lodging behavior in modern crops (Vriet et al., 2012) such as barley (Hordeum vulgare), which is the fourth most abundant cereal in both area and tonnage harvested (http://faostat.fao.org).A short-culm phenotype in crops is often accompanied by other phenotypic changes. Depending on the penetrance of such pleiotropic characters, but also the parental background and different scientific traditions and expertise, short-culmed barley mutants were historically divided into groups, such as brachytic (brh), breviaristatum (ari), dense spike (dsp), erectoides (ert), semibrachytic (uzu), semidwarf (sdw), or slender dwarf (sld; Franckowiak and Lundqvist, 2012). Subsequent mutant characterization was limited to intragroup screens and very few allelism tests between mutants from different groups have been reported (Franckowiak and Lundqvist, 2012). Although the total number of short-culm barley mutants exceeds 500 (Franckowiak and Lundqvist, 2012), very few have been characterized at the DNA level (Helliwell et al., 2001; Jia et al., 2009; Chandler and Harding, 2013; Houston et al., 2013). One of the first identified haplotypes was uzu barley (Chono et al., 2003). The Uzu1 gene encodes the brassinosteroid hormone receptor and is orthologous to the BRASSINOSTEROID-INSENSITIVE1 (BRI1) gene of Arabidopsis, a crucial promoter of plant growth (Li and Chory, 1997). The uzu1.a allele has been used in East Asia for over a century and is presently distributed in winter barley cultivars in Japan, the Korean peninsula, and China (Saisho et al., 2004). Its agronomic importance comes from the short and sturdy culm that provides lodging resistance, and an upright plant architecture that tolerates dense planting.Today, more than 50 different brassinosteroids have been identified in plants (Bajguz and Tretyn, 2003). Most are intermediates of the complex biosynthetic pathway (Shimada et al., 2001). Approximately nine genes code for the enzymes that participate in the biosynthetic pathway from episterol to brassinolide (Supplemental Fig. S1). Brassinosteroid deficiency is caused by down-regulation of these genes, but it can also be associated with brassinosteroid signaling. The first protein in the signaling network is the brassinosteroid receptor encoded by BRI1 (Li and Chory, 1997; Kim and Wang, 2010). In this work, we show how to visually identify brassinosteroid-mutant barley plants and we describe more than 20 relevant mutations in four genes of the brassinosteroid biosynthesis and signaling pathways that can be used in marker-assisted breeding strategies. 相似文献
8.
Heme biosynthesis in Methanosarcina barkeri via a pathway involving two methylation reactions
下载免费PDF全文

The methanogenic archaeon Methanosarcina barkeri synthesizes protoheme via precorrin-2, which is formed from uroporphyrinogen III in two consecutive methylation reactions utilizing S-adenosyl-L-methionine. The existence of this pathway, previously exclusively found in the sulfate-reducing delta-proteobacterium Desulfovibrio vulgaris, was demonstrated for M. barkeri via the incorporation of two methyl groups from methionine into protoheme. 相似文献
9.
Pinz I Ostroy SE Hoyer K Osinska H Robbins J Molkentin JD Ingwall JS 《American journal of physiology. Heart and circulatory physiology》2008,294(3):H1459-H1466
Overexpression of calcineurin (CLN) in the mouse heart induces severe hypertrophy that progresses to heart failure, providing an opportunity to define the relationship between energetics and contractile performance in the severely failing mouse heart. Contractile performance was studied in isolated hearts at different pacing frequencies and during dobutamine challenge. Energetics were assessed by 31P-NMR spectroscopy as ATP and phosphocreatine concentrations ([ATP] and [PCr]) and free energy of ATP hydrolysis (|Delta G( approximately ATP)|). Mitochondrial and glycolytic enzyme activities, myocardial O2 consumption, and myocyte ultrastructure were determined. In transgenic (TG) hearts at all levels of work, indexes of systolic performance were reduced and [ATP] and capacity for ATP synthesis were lower than in non-TG hearts. This is the first report showing that myocardial [ATP] is lower in a TG mouse model of heart failure. [PCr] was also lower, despite an unexpected increase in the total creatine pool. Because Pi concentration remained low, despite lower [ATP] and [PCr], |Delta G( approximately ATP)| was normal; however, chemical energy did not translate to systolic performance. This was most apparent with beta-adrenergic stimulation of TG hearts, during which, for similar changes in |Delta G( approximately ATP)|, systolic pressure decreased, rather than increased. Structural abnormalities observed for sarcomeres and mitochondria likely contribute to decreased contractile performance. On the basis of the increases in enzyme activities of proteins important for ATP supply observed after treatment with the CLN inhibitor cyclosporin A, we also conclude that CLN directed inhibition of ATP-producing pathways in non-TG and TG hearts. 相似文献
10.
Mähler M Heidtmann W Niewiesk S Gruber A Fossmark R Beil W Hedrich H Wagner S 《Helicobacter》2005,10(4):332-344
BACKGROUND: The hispid cotton rat has proven to be an excellent animal model for a variety of human infectious disease agents. This study was performed to evaluate the use of the cotton rat as a model of Helicobacter pylori infection. MATERIALS AND METHODS: Thirty-eight inbred cotton rats were orogastrically inoculated with a human strain of H. pylori. Twenty-eight control cotton rats were dosed with vehicle only. Animals were sacrificed at 2, 4, 12, 26, or 38 weeks after inoculation for bacterial and histologic and immunologic examinations. RESULTS: Helicobacter pylori was cultured from the glandular stomach of 89% of the infected cotton rats. The level of colonization was consistently high (approximately 10(4-6) colony-forming units/g tissue). Histologically, the spiral bacteria were demonstrated on the epithelial surface and in the foveolae of the gastric mucosa with highest numbers in the antrum. H. pylori infection was associated with antral-predominant, chronic active gastritis which progressively increased in severity over time. By week 26 of infection, moderate antral gastritis had developed with frequent involvement of the submucosa and formation of lymphocytic aggregates. Splenic T cells from infected cotton rats expressed mRNAs for interferon-gamma, interleukin-4, interleukin-6, and interleukin-10 following in vitro stimulation with H. pylori. Serum levels of H. pylori-specific immunoglobulin G were significantly elevated after 12 weeks of infection. CONCLUSIONS: The H. pylori-infected cotton rat represents a novel animal model that should prove useful for studies of H. pylori-induced chronic active gastritis and factors affecting gastric colonization by this pathogen. 相似文献