首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1277篇
  免费   89篇
  1366篇
  2024年   1篇
  2023年   2篇
  2022年   16篇
  2021年   24篇
  2020年   20篇
  2019年   24篇
  2018年   53篇
  2017年   27篇
  2016年   66篇
  2015年   62篇
  2014年   71篇
  2013年   85篇
  2012年   101篇
  2011年   114篇
  2010年   81篇
  2009年   77篇
  2008年   94篇
  2007年   75篇
  2006年   89篇
  2005年   55篇
  2004年   69篇
  2003年   55篇
  2002年   50篇
  2001年   7篇
  2000年   14篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1986年   3篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1964年   1篇
  1962年   1篇
排序方式: 共有1366条查询结果,搜索用时 10 毫秒
1.
The operating and storage stability of a receptor element of an amperometric biosensor based on thePseudomonas rathonis strain T capable of degrading surfactants was tested. Microbial cells were immobilized by incorporation in gels (agar, agarose, and calcium-alginate), polyvinyl alcohol membrane, adhesion to Chromatographic paper GF/A, or by cross-linking induced by glutaric aldehyde. Incorporation of microbial cells in agar gel provides long-standing conservation of their activity and viability during measurements of high concentrations of surfactants and allows the receptor element of the biosensor to be rapidly recovered after measurements.  相似文献   
2.
Reviewed are works concerning the mechanisms of collagen (type I) fibril packing and the influence of macromolecular structure and physicochemical parameters of the medium on the process.  相似文献   
3.
4.
YKL-40, a chitinase-3-like protein 1 (CHI3L1) or human cartilage glycoprotein 39 (HC gp-39), is expressed and secreted by various cell-types including macrophages, chondrocytes, fibroblast-like synovial cells and vascular smooth muscle cells. Its biological function is not well elucidated, but it is speculated to have some connection with inflammatory reactions and autoimmune diseases. Although having important biological roles in autoimmunity, there were only attempts to elucidate relationships of YKL-40 with a single or couple of diseases in the literature. Therefore, in order to analyze the relationship between YKL-40 and the overall diseases, we reviewed 51 articles that discussed the association of YKL-40 with rheumatoid arthritis, psoriasis, systemic lupus erythematosus, Behçet disease and inflammatory bowel disease. Several studies showed that YKL-40 could be assumed as a marker for disease diagnosis, prognosis, disease activity and severity. It is also shown to be involved in response to disease treatment. However, other studies showed controversial results particularly in the case of Behçet disease activity. Therefore, further studies are needed to elucidate the exact role of YKL-40 in autoimmunity and to investigate its potential in therapeutics.  相似文献   
5.
Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs.  相似文献   
6.
Various photocurable liquid biodegradable trimethylene carbonate (TMC)-based (co)oligomers were prepared by ring-opening (co)polymerization of TMC with or without L-lactide (LL) using low molecular weight poly(ethylene glycol) (PEG) (mol wt 200, 600, or 1000) or trimethylolpropane (TMP) as an initiator. Resultant (co)oligomers were pastes, viscous liquids, or liquids at room temperature, depending on the monomer composition and monomer/initiator ratio. Liquid (co)oligomers were subsequently end-capped with acrylate groups. Upon visible-light irradiation in the presence of camphorquinone as a radical generator, rapid liquid-to-solid transformation occurred to produce photocured solid. The photocuring yield increased with photoirradiation time, photointensity, and camphorquinone concentration. The photocured polymers derived from low molecular weight PEG (PEG200) and TMP exhibited much reduced hydrolysis potential compared with PEG1000-derived polymers in terms of weight loss, water uptake, and swelling depth. Force-distance curve measurements by nanoindentation using atomic force microscopy clearly showed that Young's moduli of the photocured polymer films decreased with increasing hydrolysis time. Their potential biomedical applications are discussed.  相似文献   
7.
8.
CHO (Chinese Hamster ovary) cells are widely used for biotechnology and biomedical purposes, and now the EST library database of CHO cells is built. Based on this, the construction of the hamster genome library is under exertion. Though the transformation-associated recombination (TAR) cloning method is accounted as an innovative cloning technology without the construction of the genome library in human and mouse, there has been no trial to isolate the genomic fragment from hamster genome by TAR cloning. In this study, approximately 31 kb of hamster genomic fragment was isolated from the normal human/hamster mono-chromosomal somatic cell line (UV5HL9-5B) using universal hooks of rodent repeats sequence of B1 and B2 by TAR cloning. This fragment was analyzed by bioinformatics tools related to the genome alignment for the similarity analysis among rodent and primate, and was classified into rodents by phylogenetic analysis. One putative gene was found in this region which has homology with the human c14orf4 gene. A zinc finger protein domain was found in the translated hamster ORF. Therefore, we suggest that TAR cloning technique can be applied in CHO cells using mouse genomic information, and it can lead to the establishment of the hamster genome database.  相似文献   
9.
Transglutaminase 2 (TGase2) is a calcium-dependent, cross-linking enzyme that catalyzes iso-peptide bond formation between peptide-bound lysine and glutamine residues. TGase 2 can activate NF-κB through the polymerization-mediated depletion of I-κBα without IKK activation. This NF-κB activation mechanism is associated with drug resistance in cancer cells. However, the polymers cannot be detected in cells, while TGase 2 over-expression depletes free I-κBα, which raises the question of how the polymerized I-κBα can be metabolized in cells. Among proteasome, lysosome and calpain systems, calpain inhibition was found to effectively increase the accumulation of I-κBα polymers in MCF7 cells transfected with TGase 2, and induced high levels of I-κBα polymers as well in MDA-MB-231 breast cancer cells that naturally express a high level of TGase 2. Inhibition of calpain also boosted the level of I-κBα polymers in HEK-293 cells in case of TGase 2 transfection either with I-κBα or I-κBα mutant (S32A, S36A). Interestingly, the combined inhibition of calpain and the proteasome resulted in an increased accumulation of both I-κBα polymers and I-κBα, concurrent with an inhibition of NF-κB activity in MDA-MB-231 cells. This suggests that μ-calpain proteasome-dependent I-κBα polymer degradation may contribute to cancer progression through constitutive NF-κB activation.  相似文献   
10.
To determine whether chromosomes in the porcine first polar body (PB1) can complete the second meiotic division and subsequently undergo normal pre-implantation embryonic development, we examined the developmental competence of PB1 chromosomes injected into enucleated MII stage oocytes by nuclear transfer method (chromosome replacement group, CR group). After parthenogenetic activation (PA) or in vitro fertilization (IVF), the cleavage rate of reconstructed oocytes in the IVF group (CR-IVF group, 36.4 ± 3.2%) and PA group (CR-PA group, 50.8 ± 4.2%) were significantly lower than that of control groups in which normal MII oocytes were subjected to IVF (MII-IVF group, 75.8 ± 1.5%) and PA (MII-PA group, 86.9 ± 3.7%). Unfertilized rates was significantly higher in the CR-IVF group (48.6 ± 3.3%) than in the MII-IVF group (13.1 ± 3.4%). The blastocyst formation rate was 8.3 ± 1.9% in the CR-PA group, whereas no blastocyst formation was observed in the CR-IVF group. To produce tetraploid parthenogenetic embryos, intact MII stage oocytes injected with PB1chromosomes were electrically stimulated, treated with 7.5 μg/mL cytochalasin B for 3 h (MII oocyte + PB1 + CB group), and then cultured without cytochalasin B. The average cleavage rate of reconstructed oocytes was 72.5% (48 of 66), and the blastocyst formation rate was 18.7% (9 of 48). Chromosome analysis showed similar proportions of haploid and diploid cells in the control (normal MII oocytes) and CR groups after PA; overall, 23.6% of blastocysts were tetraploid in the MII oocyte + PB1 + CB group. These results demonstrate that chromosomes in PB1 can participate in normal pre-implantation embryonic development when injected into enucleated MII stage oocytes, and that tetraploid PA blastocysts are produced (although at a low proportion) when PB1 chromosomes are injected into intact MII stage oocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号