首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   3篇
  国内免费   2篇
  2022年   1篇
  2020年   1篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   5篇
  2009年   4篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1982年   4篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
1.
2.
Atriopeptin II, a 23-amino acid synthetic peptide fragment of atrial natriuretic factor, caused an endothelium-independent relaxation of isolated precontracted rings of bovine intrapulmonary artery that was accompanied by the concomitant accumulation of guanosine 3',5'-cyclic monophosphate (cGMP) but not adenosine 3',5'-cyclic monophosphate. In contrast, rings of intrapulmonary vein were unaffected by atriopeptin II whether or not endothelium was present. Whereas methylene blue, an inhibitor of soluble guanylate cyclase, abolishes endothelium-dependent and independent arterial relaxation and cGMP accumulation in response to acetylcholine and glyceryl trinitrate, respectively, methylene blue failed to alter these responses to atriopeptin II. Similarly, the effects of atriopeptin II were unaltered by propranolol, indomethacin, or atropine. These results indicate that relaxation elicited by atriopeptin II may be selective for arterial smooth muscle receptors, does not require endothelial cells, and does not involve the soluble form of guanylate cyclase, although cGMP accumulation is stimulated.  相似文献   
3.
To determine whether agents which inhibit cytochrome P-450 enzymes also inhibit lipoxygenase, the effects of metyrapone and SKF 525-A were assessed on soybean lipoxygenase using a spectrophotometric technique which allows for measurement of both the rate and magnitude of product formation. Both SKF 525-A and metyrapone inhibited the rate of product formation and the final amount of product formed in 5 min incubations SKF 525-A was 5 to 5 times more potent than metyrapone, with the IC50 for SKF 525-A 40 microM and for metyrapone between 150 and 200 microM as determined by the total product formation in 5 minutes. Analysis of the reduced product by HPLC confirmed that the substances monitored were those generated by the 15-lipoxygenase enzyme.  相似文献   
4.
To determine whether agents which inhibit cytochrome P-450 enzymes also inhibit lipoxygenase, the effects of metyrapone and SKF 525-A were assessed on soybean lipoxygenase using a spectrophotometric technique which allows for measurement of both the rate and magnitude of product formation. Both SKF 525-A and metyrapone inhibited the rate of product formation and the final amount of product formed in 5 min incubations SKF 525-A was 5 to 6 times more potent than metyrapone, with the IC50 for SKF 525-A 40 uM and for metyrapone between 150 and 200 uM as determined by the total product formation in 5 minutes. Analysis of the reduced product by HPLC confirmed that the substances monitored were those generated by the 15-lipoxygenase enzyme.  相似文献   
5.
1. (14)C from [1-(14)C]glucose injected intraperitoneally into mice is incorporated into glutamate, aspartate and glutamine in the brain to a much greater extent than (14)C from [2-(14)C]glucose. This difference for [1-(14)C]glucose and [2-(14)C]glucose increases with time. The amount of (14)C in C-1 of glutamate increases steadily with time with both precursors. It is suggested that a large part of the glutamate and aspartate pools in brain are in close contact with intermediates of a fast-turning tricarboxylic acid cycle. 2. (14)C from [1-(14)C]acetate and [2-(14)C]acetate is incorporated to a much larger extent into glutamine than into glutamate. An examination of the time-course of (14)C incorporated into glutamine and glutamate reveals that glutamine is not formed from the glutamate pool, labelled extensively by glucose, but from a small glutamate pool. This small glutamate pool is not derived from an intermediate of a fast-turning tricarboxylic acid cycle. 3. It is proposed that two different tricarboxylic acid cycles exist in brain.  相似文献   
6.
Endothelium-derived nitric oxide: actions and properties   总被引:25,自引:0,他引:25  
Vascular smooth muscle relaxation in response to chemically diverse naturally occurring neurotransmitters and autacoids has been attributed to the formation and/or release of one or more vascular endothelium-derived relaxing factors (EDRFs) distinct from prostacyclin. The chemical, biochemical, and pharmacological properties of one such EDRF resemble closely the properties of nitric oxide (NO). Thus, both arterial and venous EDRFs as well as authentic NO cause heme-dependent activation of soluble guanylate cyclase, endothelium-independent vascular and nonvascular smooth muscle relaxation accompanied by tissue cyclic GMP formation, and inhibition of platelet aggregation and adhesion to endothelial cell surfaces. EDRF from artery, vein, and freshly harvested and cultured aortic endothelial cells was recently identified as NO or a labile nitroso species as assessed by chemical assay and bioassay. Endothelium-derived NO (EDNO) has an ultrashort half-life of 3-5 s due to spontaneous oxidation to nitrite and nitrate, both of which have only weak biological activity. EDNO can be synthesized from L-arginine and possibly other basic amino acids and polypeptides, perhaps by oxidative metabolic pathways that could involve polyunsaturated fatty acid-derived oxygen radicals. Inorganic nitrite could serve as both a stored precursor and an inactivation product of EDNO. EDNO and related EDRFs may serve physiological and/or pathophysiological roles in the regulation of local blood flow and platelet function.  相似文献   
7.
8.
Bovine lung soluble guanylate cyclase was purified to apparent homogeneity in a form that was deficient in heme. Heme-deficient guanylate cyclase was rapidly and easily reconstituted with heme by reacting enzyme with hematin in the presence of excess dithiothreitol, followed by removal of unbound heme by gel filtration. Bound heme was verified spectrally and NO shifted the absorbance maximum in a manner characteristic of other hemoproteins. Heme-deficient and heme-reconstituted guanylate cyclase were compared with enzyme that had completely retained heme during purification. NO and S-nitroso-N-acetylpenicillamine only marginally activated heme-deficient guanylate cyclase but markedly activated both heme-reconstituted and heme-containing forms of the enzyme. Restoration of marked activation of heme-deficient guanylate cyclase was accomplished by including 1 microM hematin in enzyme reaction mixtures containing dithiothreitol. Preformed NO-heme activated all forms of guanylate cyclase in the absence of additional heme. Guanylate cyclase activation was observed in the presence of either MgGTP or MnGTP, although the magnitude of enzyme activation was consistently greater with MgGTP. The apparent Km for GTP in the presence of excess Mn2+ or Mg2+ was 10 microM and 85-120 microM, respectively, for unactivated guanylate cyclase. The apparent Km for GTP in the presence of Mn2+ was not altered but the Km in the presence of Mg2+ was lowered to 58 microM with activated enzyme. Maximal velocities were increased by enzyme activators in the presence of either Mg2+ or Mn2+. The data reported in this study indicate that purified guanylate cyclase binds heme and the latter is required for enzyme activation by NO and nitroso compounds.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号