首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2016年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2005年   1篇
  2003年   1篇
  1930年   1篇
  1925年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Akt (or protein kinase B) plays a central role in coordinating growth, survival and anti-apoptotic responses in cells and we hypothesized that changes in Akt activity and properties would aid the reprioritization of metabolic functions that occurs during mammalian hibernation. Akt was analyzed in skeletal muscle and liver of Richardson's ground squirrels, Spermophilus richardsonii, comparing the enzyme from euthermic and hibernating states. Akt activity, measured with a synthetic peptide substrate, decreased by 60-65% in both organs during hibernation. Western blotting showed that total Akt protein did not change in hibernation but active, phosphorylated Akt (Ser 473) was reduced by 40% in muscle compared with euthermic controls and was almost undetectable in liver. Kinetic analysis of muscle Akt showed that S(0.5) values for Akt peptide were 28% lower during hibernation, compared with the euthermic enzyme, whereas S(0.5) ATP increased by 330%. Assay at 10 degrees C also elevated S(0.5) ATP of euthermic Akt by 350%. Changes in ATP affinity would limit Akt function in the hibernator since the muscle adenylate pool size is also strongly suppressed during cold torpor. Other parameters of euthermic and hibernator Akt were the same including activation energy calculated from Arrhenius plots and sensitivity to urea denaturation. DEAE Sephadex chromatography of muscle extracts revealed three peaks of Akt activity in euthermia but only two during hibernation suggesting isozymes are differentially dephosphorylated during torpor. Altered enzyme properties and suppression of Akt activity would contribute to the coordinated suppression of energy-expensive anabolic and growth processes that is needed to maintain viability during over weeks of winter torpor.  相似文献   
2.
Marls with pillow lavas of Late Eocene age from Castelnuovo in the Euganean Hills (Padua, NE Italy) have yielded three new verrucid cirripede species, Verruca veneta nov. sp., Costatoverruca? seguenzai nov. sp., and Metaverruca euganea nov. sp. The stratigraphic distribution of these taxa is discussed in light of previous verrucid records and their geologic context is established. They represent the oldest known verrucids from Italy.  相似文献   
3.
Abstract  The Lower Palaeozoic biostratigraphic records in the Alps are briefly reviewed and the result of a new study of the acritarch assemblage found by Sassi et al. (1984) in the greenschist facies black metapelites of the Southalpine metamorphic basement at Col di Foglia, and studied by Kalvacheva et al. (1986), is presented. The new  taxonomic and biostratigraphic study indicates a late Cambrian age, which is the oldest unquestionable, recently assessed, biostratigraphic dating of the entire Alps, as well as of the Italian peninsular. Keywords Alps, Southalpine metamorphic basement, Eastern Alps, Agordo, Acritarchs, Cambrian Subject codes: G17002  相似文献   
4.
5.
Ohne ZusammenfassungEine vorläufige Mitteilung unter gleichem Titel erschien als Nr. 152 aus der Biol. Versuchsanst. (Zool. Abt., Vorstand H.Przibram) im Akad. Anz., Nr 17. Wien 4. VII. 1929.  相似文献   
6.
Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ~10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system.  相似文献   
7.
Chronic placental insufficiency (CPI), a known cause of intrauterine growth restriction, can lead to structural alterations in the developing brain that might underlie postnatal neurological deficits. We have previously demonstrated significant reductions in the volumes of hippocampal neuropil layers in fetal guinea pig brains following experimentally induced growth restriction. To determine the components of the neuropil affected in the brains of growth restricted (GR) fetuses, the dendritic morphology of CA1 pyramidal neurons and dentate granule cells was examined. CPI was induced by unilateral uterine artery ligation in pregnant guinea pigs at midgestation (term approximately 67 days). Hippocampi from control and GR fetuses were stained using the Rapid Golgi technique and the growth and branching of the dendritic arbors were quantified using the Sholl method. In addition, the density of dendritic spines was determined on the apical arbors of each population. In GR brains (n = 7) compared to controls (n = 7), there was a reduction in dendritic elongation (p < 0.005) and an alteration in the branch point distribution in CA1 basal arbors, and a reduction both in the outgrowth (p < 0.05) and branch point number (p < 0.05) of CA1 apical arbors. Dentate granule cells from GR brains also demonstrated reduced dendritic outgrowth (p < 0.05). There was an increase in dendritic spine density in both neuronal populations; this might be due either to altered synaptic pruning or as a compensatory mechanism for reduced dendritic length. These findings demonstrate that a chronic prenatal insult causes selective changes in the morphology of hippocampal cell dendrites and may lead to alterations in hippocampal function in the postnatal period.  相似文献   
8.
Glucose-6-phosphate dehydrogenase (G6PDH) and the pentose phosphate pathway play a key role in reductive biosynthesis and antioxidant defense, while diverting glucose from other cellular functions. G6PDH was isolated from liver of the wood frog, Rana sylvatica, a freeze tolerant species that uses glucose as a cryoprotectant. Analysis of kinetic parameters (K m and V max) of G6PDH showed a significant increase in K m G6P (from 98.2 ± 3.8 to 121 ± 5.3 μM) and K m NADP+ (from 65.5 ± 2.3 to 89.1 ± 4.8 μM) in frogs following freezing exposure, indicating lower affinity for G6PDH substrates in this state. Subsequent analyses indicated that differential phosphorylation of G6PDH between the two states was responsible for the altered kinetic properties. Thus, two differentially charged forms of G6PDH were resolved by DEAE ion-exchange chromatography and, compared with controls, the proportion of G6PDH activity in peak I decreased and in peak II increased in liver from frozen frogs. G6PDH in peak I had a K m G6P of 94.1 ± 1.1 μM and K m NADP+ of 61.2 ± 3.5 μM, whereas Peak II G6PDH showed higher values (K m G6P was 172 ± 4.3 μM, K m NADP+ was 98.2 ± 3.3 μM). G6PDH from each peak was incubated with ions and second messengers to stimulate the actions of protein kinases with results indicating that G6PDH can be phosphorylated by protein kinase G, protein kinase C, AMP-activated protein kinase, or calmodulin-dependent protein kinase. The data indicate that in control frogs, G6PDH is in a high phosphate form and displays a high substrate affinity, whereas in frozen frogs G6PDH is less phosphorylated, with lower substrate affinity.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号