首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   10篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   9篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   12篇
  2010年   11篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1978年   1篇
  1967年   2篇
  1966年   2篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
The world's primates have been severely impacted in diverse and profound ways by anthropogenic pressures. Here, we evaluate the impact of various infrastructures and human-modified landscapes on spatial patterns of primate species richness, at both global and regional scales. We overlaid the International Union for the Conservation of Nature (IUCN) range maps of 520 primate species and applied a global 100 km2 grid. We used structural equation modeling and simultaneous autoregressive models to evaluate direct and indirect effects of six human-altered landscapes variables (i.e., human footprint [HFP], croplands [CROP], road density [ROAD], pasture lands [PAST], protected areas [PAs], and Indigenous Peoples' lands [IPLs]) on global primate species richness, threatened and non-threatened species, as well as on species with decreasing and non-decreasing populations. Two-thirds of all primate species are classified as threatened (i.e., Critically Endangered, Endangered, and Vulnerable), with ~86% experiencing population declines, and ~84% impacted by domestic or international trade. We found that the expansion of PAST, HFP, CROP, and road infrastructure had the most direct negative effects on primate richness. In contrast, forested habitat within IPLs and PAs was positively associated in safeguarding primate species diversity globally, with an even stronger effect at the regional level. Our results show that IPLs and PAs play a critical role in primate species conservation, helping to prevent their extinction; in contrast, HFP growth and expansion has a dramatically negative effect on primate species worldwide. Our findings support predictions that the continued negative impact of anthropogenic pressures on natural habitats may lead to a significant decline in global primate species richness, and likely, species extirpations. We advocate for stronger national and international policy frameworks promoting alternative/sustainable livelihoods and reducing persistent anthropogenic pressures to help mitigate the extinction risk of the world's primate species.  相似文献   
2.
The mapping strategy for the bovine genome described in this paper uses large insert clones as a tool for physical mapping and as a source of highly polymorphic microsatellites for genetic typing, and was one objective of the BovMap Project funded by the European Union (UE). Eight-three cosmid and phage clones were characterized and used to physically anchor the linkage groups defining all the bovine autosomes and the X Chromosome (Chr). By combining physical and genetic mapping, clones described in this paper have led to the identification of the linkage groups corresponding to Chr 9, 12, 16, and 25. In addition, anchored loci from this study were used to orient the linkage groups corresponding to Chr 3, 7, 8, 9, 13, 16, 18, 19, and 28 as identified in previously published maps. Comparison of the estimated size of the physical and linkage maps suggests that the genetic length of the bovine genome may be around 4000 cM. Received: 1 July 1996 / Accepted: 13 September 1996  相似文献   
3.
Long-term monitoring programs, wildlife surveys, and other research involving species population assessment require reliable data on population status. Given the logistically challenging nature of some species’ habitats and cryptic behaviors, collecting these data can prove to be a considerable barrier. We used detection/nondetection data from pileated gibbons (Hylobates pileatus) in the Cardamom Mountains of southwest Cambodia to estimate their population occupancy and detectability. We modeled occupancy using elevation, tree height, tree density, tree diversity, and disturbance covariates. Modeling demonstrated that 83% of the sites are occupied by Hylobates pileatus and that the detectability of the species varies positively with elevation. No clear relationship between habitat quality covariates and occupancy of Hylobates pileatus emerged. Effort analysis based on model estimates demonstrated that at high elevations, less than half the number of site visits is needed to attain the same detectability estimate precision as across all elevations. We suggest that human activities at low elevations, which affect forest composition, are the central factors impacting the detectability and occupancy of Hylobates pileatus. Longer sampling durations and/or a higher number of site visits, especially at lower elevations, increase precision of the occupancy estimator for the least effort. For effective future monitoring and research for this and similar species, using this relatively simple method, applied with repeat site visits, would allow a longitudinal comparison of detection at sites in difficult terrain.  相似文献   
4.

Background

Targeted Next Generation Sequencing (NGS) offers a way to implement testing of multiple genetic aberrations in diagnostic pathology practice, which is necessary for personalized cancer treatment. However, no standards regarding input material have been defined. This study therefore aimed to determine the effect of the type of input material (e.g. formalin fixed paraffin embedded (FFPE) versus fresh frozen (FF) tissue) on NGS derived results. Moreover, this study aimed to explore a standardized analysis pipeline to support consistent clinical decision-making.

Method

We used the Ion Torrent PGM sequencing platform in combination with the Ion AmpliSeq Cancer Hotspot Panel v2 to sequence frequently mutated regions in 50 cancer related genes, and validated the NGS detected variants in 250 FFPE samples using standard diagnostic assays. Next, 386 tumour samples were sequenced to explore the effect of input material on variant detection variables. For variant calling, Ion Torrent analysis software was supplemented with additional variant annotation and filtering.

Results

Both FFPE and FF tissue could be sequenced reliably with a sensitivity of 99.1%. Validation showed a 98.5% concordance between NGS and conventional sequencing techniques, where NGS provided both the advantage of low input DNA concentration and the detection of low-frequency variants. The reliability of mutation analysis could be further improved with manual inspection of sequence data.

Conclusion

Targeted NGS can be reliably implemented in cancer diagnostics using both FFPE and FF tissue when using appropriate analysis settings, even with low input DNA.  相似文献   
5.
The genetic integrity of crossfertile bovine- or cattle-like species may be endangered by species hybridization. Previously, amplified fragment length polymorphism, satellite fragment length polymorphism and microsatellite assays have been used to analyze the species composition of nuclear DNA in taurine cattle, zebu, banteng and bison populations, while mitochondrial DNA reveals the origin of the maternal lineages. Here, we describe species-specific markers of the paternally transmitted Y-chromosome for the direct detection of male-mediated introgression. Convenient PCR-restriction fragment length polymorphism and competitive PCR assays are shown to differentiate the Y-chromosomes of taurine cattle, American bison and European bison, and to detect the banteng origin of Indonesian Madura and Bali cattle bulls.  相似文献   
6.
This paper explores patterns of genetic diversity near a locus known to have been under selection. The myostatin gene (GDF-8) has been shown to be associated with double muscling, a phenotype selected for in a number of cattle breeds. We examined population genetic parameters for microsatellite loci at varying distances from GDF-8 in double-muscled (DM) and non-double-muscled (non-DM) cattle breeds in order to assess patterns of diversity. A theoretical analysis was also performed to predict the patterns of diversity expected under different scenarios. We found differences in the patterns of heterozygosity, allele diversity and linkage disequilibrium between DM and non-DM breeds. However, there were some exceptions to the predicted patterns. These are discussed in light of the histories of the breeds and the potential for using microsatellite diversity for mapping trait genes in livestock populations.  相似文献   
7.
Phylogeny of bovine species based on AFLP fingerprinting   总被引:5,自引:0,他引:5  
The Bovini species comprise both domestic and wild cattle species. Published phylogenies of this tribe based on mitochondrial DNA contain anomalies, while nuclear sequences show only low variation. We have used amplified fragment length polymorphism (AFLP) fingerprinting in order to detect variation in loci distributed over the nuclear genome. Computer-assisted scoring of electrophoretic fingerprinting patterns yielded 361 markers, which provided sufficient redundancy to suppress stochastic effects of intraspecies polymorphisms and length homoplasies (comigration of non-homologous fragments). Tree reconstructions reveal three clusters: African buffalo with water buffalo, ox with zebu, and bison with wisent. Similarity values suggest a clustering of gaur and banteng, but bifurcating clustering algorithms did not assign consistent positions to these species and yak. We propose that because of shared polymorphisms and reticulations, tree topologies are only partially adequate to represent the phylogeny of the Bovini. Principal-coordinate analysis positions zebu between a gaur/banteng cluster and taurine cattle. This correlates with the region of origin of these species and suggests that genomic distances between the cattle species have been influenced by genetic exchange between neighbouring ancestral populations.  相似文献   
8.
9.
Microarray-based enrichment of selected genomic loci is a powerful method for genome complexity reduction for next-generation sequencing. Since the vast majority of exons in vertebrate genomes are smaller than 150 nt, we explored the use of short fragment libraries (85–110 bp) to achieve higher enrichment specificity by reducing carryover and adverse effects of flanking intronic sequences. High enrichment specificity (60–75%) was obtained with a relative even base coverage. Up to 98% of the target-sequence was covered more than 20× at an average coverage depth of about 200×. To verify the accuracy of SNP/mutation detection, we evaluated 384 known non-reference SNPs in the targeted regions. At ∼200× average sequence coverage, we were able to survey 96.4% of 1.69 Mb of genomic sequence with only 4.2% false negative calls, mostly due to low coverage. Using the same settings, a total of 1197 novel candidate variants were detected. Verification experiments revealed only eight false positive calls, indicating an overall false positive rate of less than 1 per ∼200 000 bp. Taken together, short fragment libraries provide highly efficient and flexible enrichment of exonic targets and yield relatively even base coverage, which facilitates accurate SNP and mutation detection. Raw sequencing data, alignment files and called SNPs have been submitted into GEO database http://www.ncbi.nlm.nih.gov/geo/ with accession number GSE18542.  相似文献   
10.
For comparative primatology proper recognition of basal taxa (i.e. species) is indispensable, and in this the choice of a suitable gene with high phylogenetic resolution is crucial. For the goals of species identification in animals, the cytochrome c oxidase subunit 1 (cox1) has been introduced as standard marker. Making use of the difference in intra- and interspecific genetic variation – the DNA barcoding gap – cox1 can be used as a fast and accurate marker for the identification of animal species. For the Order Primates we compare the performance of cox1 (166 sequences; 50 nominal species) in species-identification with that of two other mitochondrial markers, 16S ribosomal RNA (412 sequences, 92 species) and cytochrome b (cob: 547 sequences, 72 species). A wide gap exist between intra- and interspecific divergences for both cox1 and cob genes whereas this gap is less apparent for 16S, indicating that rRNA genes are less suitable for species delimitation in DNA barcoding. For those species where multiple sequences are available there are significant differences in the intraspecific genetic distances between different mitochondrial markers, without, however, showing a consistent pattern. We conclude that cox1 allows accurate differentiation of species and as such DNA barcoding may have an important role to play in comparative primatology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号